Definition of the CRMtex
An Extension of CIDOC CRM to Model Ancient Textual Entities

Proposal for approval by CIDOC CRM - SIG

Version 0.8
January 2017

Currently maintained by Francesca Murano and Achille Felicetti.

Contributors: Martin Doerr, Francesca Murano, Achille Felicetti
E90 Symbolic Object ... 30

1.5.2 CIDOC CRM Properties .. 31
P16 used specific object (was used for) 31
P20 had specific purpose (was purpose of) 32
P56 bears feature (is found on) .. 32
P62 depicts (is depicted by) .. 33
P67 refers to (is referred to by) ... 33
P94 has created (was created by) ... 33
P106 is composed of (forms part of) ... 34
P108 has produced (was produced by) 35

1.6 Referred to Scientific Observation Model Classes and properties 36
1.6.1 CRMsci Classes ... 36
S4 Observation ... 36
S15 Observable Entity .. 37

1.6.2 CRMsci Properties ... 37
O6 forms former or current part of (has former or current part) ... 37
O16 observed value (value was observed by) 38
1.1 Introduction

1.1.1 Scope

This document presents CRM\textsubscript{tex}, an extension of CIDOC CRM created to support the study of ancient documents and to identify relevant textual entities involved in their study; furthermore, it proposes the use of CIDOC CRM to encode them and to model the scientific process of investigation related to the study of ancient texts in order to foster integration with other cultural heritage research fields. After identifying the key concepts, assessing the available technologies and analysing the entities provided by CIDOC CRM and by its extensions, the extension introduces new specific classes more responsive to the specific needs of the various disciplines involved (including papyrology, palaeography, codicology and epigraphy). The profitable application of IT to the study of ancient sources for expanding our knowledge of the past is the inspiring principle of this work.

The first written documents date back to the IV millennium BC. With the evolution of this technology, humans began to write texts on different supports using different techniques: inscriptions, papyri, manuscripts and other similar documents. Traditionally, the study of this heterogeneous documentation falls within different disciplines, generally grown around the specific physical characteristics of each class of documents (e.g., papyrology for the study of papyri and epigraphy for inscriptions). Nevertheless, an interdisciplinary approach is essential and the identification of common elements is paramount in order to confer uniformity and interoperability to all these disciplines.

The first and most obvious feature that catches the eye when examining these documents is the fact that all of them bear a text. The second thing that should be observed, specifically in ancient textual sources, is the special relationship between the text and its support. In comparison to modern texts, ancient ones are characterised by their uniqueness because they are the result of manual work rather than a mechanised processes, as occurs with modern printing.

This and other characteristics make particularly arduous the study and digitisation of this type of documentation: the close relationship between the text and its support requires careful analysis since they are inextricably linked to form a unique object of study. In fact, even in the case of texts written by the same person on identical media and with identical technique, such as the \textit{codices} produced by the amanuenses in European monasteries during the Middle Ages, the resulting copies are never identical: as with any human activity, writing also happens \textit{hic et nunc}, which is why our hand-writing is never completely identical with itself; by contrast, modern printed copies of books and documents are totally indistinguishable from one specimen to another, since the characters are etched from an identical matrix.

In the ancient world, however, some types of inscriptions were created through mechanised processes, such as the legends of coins, medals, stamps and seals. Also, the early printed texts, created before the invention of new industrial processes during the Industrial Revolution, are unique exemplars, since they were produced through typefaces created by hand, in the same style as manuscript.

Nevertheless, even for these classes of objects it is fundamental to investigate the close relation linking the text with the ancient object that carries it. The uniqueness of the written text remains unchanged in this case also, since it is characterised by the peculiar history of the support.

The first aim of this extension is therefore to identify and define in a clear and unambiguous way the main entities involved in the study and edition of ancient handwritten texts and then to describe them by means of appropriate ontological instruments in a multidisciplinary perspective.

Since writing is an intellectual process aimed at the semiotic encoding of a language, it is absolutely necessary to distinguish between the physical manifestation of the text, understood as a set of physical features shown on a given support through the use of a specific technique (e.g. scribbled with ink, painted, engraved, etc.), from its abstract dimension, i.e. from the set of concepts represented by these same physical features. In writing, as in any semiotic system, every component (sign) possesses a dual nature, one physical and another conceptual. Writing, therefore, appears as a code requiring an encoding process by the creator or writer and a decoding one by the receiver or reader to be properly understood.
1.1.2 Status

CRMtex is the result of collaboration between scholars of many cultural heritage institutions. The first need that the model attempts to meet is to create a common ground for the integration and interoperability of records concerning ancient texts on every level, from the description of the supports and carried texts to the management of the documentation produced by various institutions using national and institutional standards (e.g. TEI/EpiDoc). This document describes a community model, which is under approval by CRM SIG to be formally and methodologically compatible with CIDOC CRM. However, in a broader sense, it is always open to any possible integration and addition that may become necessary as a result of its practical use on real problems on a large scale. The model is intended to be maintained and promoted as an international standard.

1.1.3 Naming Convention

All the classes declared were given both a name and an identifier constructed according to the conventions used in the CIDOC CRM model. For classes that identifier consists of the letter TX followed by a number. Resulting properties were also given a name and an identifier, constructed according to the same conventions. That identifier consists of the letters TXP followed by a number, which in turn is followed by the letter “i” every time the property is mentioned “backwards”, i.e., from target to domain (inverse link). “TX” and “TXP” do not have any other meaning. They correspond respectively to letters “E” and “P” in the CIDOC CRM naming conventions, where “E” originally meant “entity” (although the CIDOC CRM “entities” are now consistently called “classes”), and “P” means “property”. Whenever CIDOC CRM classes are used in our model, they are named by the name they have in the original CIDOC CRM. CRMsci classes and properties are referred with their respective names, classes denoted by S and properties by O.

Letters in red colour in CRM Classes and properties are additions/extensions coming by the scientific observation model.
1.2 Class and Property hierarchies

The CIDOC CRM model declares no “attributes” at all (except implicitly in its “scope notes” for classes), but regards any information element as a “property” (or “relationship”) between two classes. The semantics are therefore rendered as properties, according to the same principles as the CIDOC CRM model.

Although they do not provide comprehensive definitions, compact mono hierarchical presentations of the class and property IsA hierarchies have been found to significantly aid in the comprehension and navigation of the model, and are therefore provided below.

The class hierarchy presented below has the following format:

- Each line begins with a unique class identifier, consisting of a number preceded by the appropriate letter “E”, “TX”, “S”
- A series of hyphens (“-”) follows the unique class identifier, indicating the hierarchical position of the class in the IsA hierarchy.
- The English name of the class appears to the right of the hyphens.
- The index is ordered by hierarchical level, in a “depth first” manner, from the smaller to the larger sub hierarchies.
- Classes that appear in more than one position in the class hierarchy as a result of multiple inheritance are shown in an italic typeface.
1.2.1 CRMtex class hierarchy, aligned with portions from the CRMsci and the CIDOC CRM class hierarchies

This class hierarchy lists:
• all classes declared in Ancient Text model (CRMtex)
• all classes declared in CRMsci and CIDOC CRM that are declared as superclasses of classes declared in the Ancient Text Model,
• all classes declared in CRMsci or CIDOC CRM that are either domain or range for a property declared in the Ancient Text Model,
• all classes declared in CRMsci and CIDOC CRM that are either domain or range for a property declared in Ancient Text Model or CIDOC CRM that is declared as superproperty of a property declared in the Ancient Text Model,
• all classes declared in CRMsci and CIDOC CRM that are either domain or range for a property that is part of a complete path of which a property declared in Ancient Text Model is declared to be a shortcut.

E1 CRM Entity
S15 - Observable Entity
E2 - - Temporal Entity
E5 - - Event
E7 - - Activity
TX6 - - - - Transcription
E13 - - - - Attribute Assignment
S4 - - - - Observation
TX5 - - - - - Reading
E63 - - - Beginning Of Existence
E12 - - - Production
TX2 - - - - Writing
E77 - - Persistent Item
E70 - - Thing
E72 - - - Legal Object
E18 - - - Physical Thing
E26 - - - - - Physical Feature
E25 - - - - - - Man-made Feature
TX1 - - - - - Written Text
TX7 - - - - - - - Written Text Fragment
TX4 - - - - - - Writing Field
E71 - - - Man-made Thing
E28 - - - - Conceptual Object
E90 - - - - Symbolic Object
E73 - - - - - Information Object
E29 - - - - - - Design or Procedure
TX3 - - - - - Writing System

1.2.2 CRMtex property hierarchy, aligned with portions from the CRMsci and the CIDOC CRM property hierarchies

This property hierarchy lists:
• all properties declared in Ancient Text Model,
• all properties declared in CRMsci and CIDOC CRM that are declared as superproperties of properties declared in Ancient Text Model,
• all properties declared in CRMsci and CIDOC CRM that are part of a complete path of which a property declared in Ancient Text Model, is declared to be a shortcut.

<table>
<thead>
<tr>
<th>Property id</th>
<th>Property Name</th>
<th>Entity – Domain</th>
<th>Entity-Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>TXP1</td>
<td>used writing system (writing system used for)</td>
<td>TX2 Writing</td>
<td>TX3 Writing System</td>
</tr>
<tr>
<td>TXP2</td>
<td>includes (is included within)</td>
<td>TX4 Writing Field</td>
<td>TX1 Written Text</td>
</tr>
<tr>
<td>TXP3</td>
<td>rendered (is rendered by)</td>
<td>TX6 Transcription</td>
<td>TX3 Reading</td>
</tr>
<tr>
<td>TXP4</td>
<td>constituted (is constituted by)</td>
<td>TX7 Written Text Fragment</td>
<td>TX1 Written Text</td>
</tr>
</tbody>
</table>
1.3 Graphical overview

Figure 1: Text entities and text production in CRMtex

Figure 2: The process of investigation of ancient texts in CRMtex
1.3.1 Class and property usage examples

The following example is intended to illustrate how CRMtex classes and properties could be used to encode, for instance, epigraphic information. The inscriptions on the Arch of Constantine, one of the most famous ancient monuments in Rome, have been chosen as examples of ancient text occurring on a physical carrier to show how they can be semantically described in relation with the archaeological object they are carried by.

The monument, still located in its original position between the Colosseum and the Roman Forum, is a triumphal marble arch (the largest monument of this class in Roman era) dedicated in 315/316 A.D. by the Roman Senate to the emperor Constantine after his victory over Maxentius at the Battle of the Milvian Bridge in 312 A.D. According with the CIDOC CRM, the monument can be represented with an instance of the E22 Man-made Object class.

Among the other decorations (including statues, panels, reliefs and similar decorative material), the arch carries, on its attic, two identical inscriptions (reference number: CIL VI 1139), originally inlaid with gilded bronze letters, explaining the reason of its construction. As of today, bronze letters are lost and only the large cuttings in the marble, in which the bronze letters sat, remain. The inscription (Figure 3) is repeated, identically, on both sides (i.e.: on the South and North faces) of the arch’s attic. A transcription and a translation in English of the same inscription is additionally provided below.

Figure 3: The inscription on the South face on the attic of the Arch of Constantine.

Inscription Transcription

```
IMP(ERATORI) · CAES(ARI) · FL(AVIO) · CONSTANTINO · MAXIMO · P(IO) · F(ELICI) · AVGUSTO · S(ENATUS) · P(OPULUS) · Q(UE) · R(OMANUS) · QVOD · INSTINCTV · DIVINITATIS · MENTIS · MAGNITVDINE · CVM · EXERCITV · SVO · TAM · DE · TYRANNO · QVAM · DE · OMNI · EIVS · FACTIONE · VNO · TEMPORE · IVSTIS · REMPVBLICAM · VLTVS · EST · ARMIS · ARCVM · TRIVMPHIS · INSIGNEM · DICAVIT
```

Inscription Translation

To the Emperor Caesar Flavius Constantine, the Greatest, Pius, Felix, Augustus: inspired by (a) divinity, in the greatness of his mind, he used his army to save the state by the just force of arms from a tyrant on the one hand and every kind of factionalism on the other; therefore the Senate and the People of Rome have dedicated this exceptional arch to his triumphs.

CRMtex description of the text

From CIDOC CRM point of view, the Arch is an archaeological object (i.e., an E22 Man-made Object) made of marble, mainly intended to commemorate the emperor and not to carry the various inscriptions present on it. A writing event (TX2) can be assigned to the inscriptions, thus it is always
possible to distinguish the production event of the monument from that one of the inscriptions if needed.

CRMtex can be used to describe the inscriptions appearing on the arch and relate them to the monument via the P56 is found on property. Each of the two inscriptions can be rendered as a TX1 Written Text, being them physical features having the intended purpose of carrying a specific significance. A TX2 Writing event can be assigned to each TX1 Written text via the P108 was produced by property to render the production of the cuttings made to host the bronze letters: since we have two inscriptions we have the opportunity, this way, to distinguish the two processes that led to their production.

A TX4 Writing Field class can be used to describe the portion of the surface of the arch reserved by the builders and appositely arranged for accommodating the inscription in order to highlight it from the other parts of the object and to enhance its readability. Thus, the CRMtex encoding in this case will include two TX4s instances.

The intellectual message to be conveyed (E90 Symbolic Object) is encoded by means of a language (E56 Language) and by means of the writing system this language uses. From this follows that the TX1 Written Text class is the concrete graphical manifestation (i.e. the signs – in this case the letters – we can read on the stone) of the conceptual level of encoding a linguistic expression through the semiotic activity of writing (TX2 Writing) by means of a TX3 Writing System (in this case, Latin alphabet) and of the graphemes (E90 Symbolic Object) composing it.

Over the centuries, the arch of Constantine has been investigated thousands of times by scholars from all over the world and also reproduced by famous illustrators such as Giovan Battista Piranesi. Also, the inscriptions have been studied and transcribed several times in order to understand its nature, clarify the meaning of each section and improve its historical comprehension so as to put it in direct relation with the events that determined its creation.

For this type of activity, aimed at studying and processing the inscribed text, CRMtex provides specific classes and properties. The transcription of the text(s) present in Corpus Inscriptionum Latinarum (CIL VI 1139), for instance, can be represented via the TX6 Transcription class while the analysis of the same inscription(s), carried out by Rodolfo Lanciani in 18921, can be documented using the TX5 Reading class, a subclass of the CRMsci S4 Observation class, underlying the scientific nature of the investigation. Reading (TX5) and transcription (TX6) activities can be related via the P20 has specific purpose property, inherited by CIDOC CRM core.

The TX7 Written Text Fragment class can be used to highlight specific portions of text on which the study focuses, on which specific phenomena appear or from which it is possible to derive special meanings. Figure 4 shows a CRMtex conceptualisation of one of the inscriptions on the Arch of Constantine.

Figure 4: CRMtx encoding of one of the inscriptions (South) on the Arch of Constantine.
1.4 CRMtex - Class Declarations

The classes are comprehensively declared in this section using the following format:

- Class names are presented as headings in bold face, preceded by the class’s unique identifier;
- The line “Subclass of:” declares the superclass of the class from which it inherits properties;
- The line “Superclass of:” is a cross-reference to the subclasses of this class;
- The line “Scope note:” contains the textual definition of the concept the class represents;
- The line “Examples:” contains a bulleted list of examples of instances of this class.
- The line “Properties:” declares the list of the class’s properties;
- Each property is represented by its unique identifier, its forward name, and the range class that it links to, separated by colons;
- Inherited properties are not represented;
- Properties of properties, if they exist, are provided indented and in parentheses beneath their respective domain property.
TX1 Written Text
Subclass of: E25 Man-Made Feature
Scope Note: Subclass of E25 Man-Made Feature intended to describe a particular feature (i.e., set of glyphs) created (i.e., written) on various kinds of support, having semiotic significance and the declared purpose of conveying a specific message towards a given recipient or group of recipients.
Examples:
- The inscription engraved on the South side of the attic of the Arch of Constantine (E22) in Rome (see section 1.3.1).
Properties: P56 is found on (bears feature): E19 Physical Object

TX2 Writing
Subclass of: E12 Production
Superclass of: E25 Man-Made Feature
Scope Note: Subclass of E12 Production indicating the activity of creating textual entities using various techniques (painting, sculpture, etc.) and by means of specific tools on a given physical carrier in a non-mechanical way.
Examples:
- The engraving in the marble of the inscription (TX1) placed on the attic of the Arch of Constantine (E22) in Rome (see section 1.3.1).
Properties: TXP1 used writing system (writing system used by): TX3 Writing System

TX3 Writing System
Subclass of: E29 Design or Procedure
Superclass of: E25 Man-Made Feature
Scope Note: Subclass of E29 Design or Procedure refers to a conventional system consisting of a set of signs (graphemes, E90) used to codify a natural language. A writing system can be used to notate different natural languages, by means of specific rules in the combination and phonological value assignment of the chosen graphemes. It is used to produce a TX1 Written Text during a TX2 Writing event.
Examples:
- The Latin alphabet used for codifying the Latin inscriptions (TX1) occurring on the Arch of Constantine (E22).
Properties: TXP1 writing system used by (used writing system): TX2 Writing

TX4 Writing Field
Subclass of: E25 Man-Made Feature
Superclass of: Subclass of [E25] Man-Made Feature, usually understood as the surface or portion of the physical carrier reserved, delimited and arranged for the purpose of accommodating a written text, to highlight and isolate it from the other parts of the object to which it belongs, to enhance and guarantee its readability. This entity is paramount in epigraphy, in which a specific element called “epigraphic field” has been defined by the discipline itself. Its importance is also evident in papyrology and codicology, where a clear distinction between area(s) containing the written text and empty parts of the support (margins, intercolumnia, etc.) is significant for the definition of styles and periods of the document.

Examples:
- The portion of the marble surface of the South part of the attic of the Arch of Constantine (E22) reserved by the builders for accommodating the South inscription (TX1) (see section 1.3.1).

Properties: TXP2 includes (is included within): TX1 Written Text

TX5 Reading
Subclass of: S4 Observation
Superclass of: Subclass of the CRMsci S4 Observation class, referring to the scientific autoptic examination of the text and constituting the first action required in preparation for its study. It consists of an accurate analysis of the surface and the signs and prescribes the use of specific tools and procedures, to establishing as faithfully as possible the exact value of each sign drawn on the physical feature.

Examples:
- The autoptic investigation of the South inscription (TX1) on the Arch of Constantine (E22) made by Rodolfo Lanciani between 1893 and 1901.

Properties: TXP3 is rendered by (renders): TX6 Transcription

TX6 Transcription
Subclass of: E7 Activity
Superclass of: Subclass of E7 Activity, referring to the activity of re-writing the text conducted by an editor. This operation, in some cases, involves a writing system (TX3) different from that of the original text (e.g., Latin characters to render a Coptic text); this results in a re-encoding of the text itself and, from a linguistic point of view, it is indicated more properly as a ‘transliteration’, because it implies a 1:1 relation between the signs of the two writing systems. The P16 used specific object (was used for) property can be used to specify the role of the original graphemes during the commuting operations.

Examples:
- Transcription, in Latin characters, of the inscription(s) (TX1) on the Arch of Constantine (E22) reported in Corpus Inscriptionum Latinarum (CIL VI 1139).
- The transcription of the same inscription, by using the same characters, reported in the present document (see section 1.3.1).

Properties: TXP3 renders (is rendered by): TX6 Transcription
TX7 Written Text Fragment

Subclass of: TX1 Written Text
Superclass of: TX1 Written Text

Scope Note: Subclass of TX1 Written Text intended to identify portions of text considered to be of particular significance by scholars, as witnesses of a certain meaning or bearers of a particular phenomenon relevant to the investigation, study and understanding of the ancient text. Examples of such text portions are: columns, fragments, sections, paragraphs, as well as single words or letters, or other components of the written text. To each of these entities can be associated a single production event (TX2) or destruction event (E6), as in the case of letters or words damaged or worn by atmospheric agents or human interventions, as well as specific conditions (E3) for documenting its status during the observation process (S4). The relationship between a written text (TX1) and its components is documented through the TXP4 is constituted by property.

Examples:
- The “INSTINCTV DIVINITATIS” text portion of the inscription (TX1) on the Arch of Constantine (E22), commented by Rodolfo Lanciani in 1892, in his book Pagan and Christian Rome (see section 1.3.1).

Properties: TXP4 constitutes (is constituted by): TX1 Written Text
1.4 CRMtex - Property Declarations

The properties are comprehensively declared in this section using the following format:

- Property names are presented as headings in bold face, preceded by unique property identifiers;
- The line “Domain:” declares the class for which the property is defined;
- The line “Range:” declares the class to which the property points, or that provides the values for the property;
- The line “Superproperty of:” is a cross-reference to any subproperties the property may have;
- The line “Scope note:” contains the textual definition of the concept the property represents;
- The line “Examples:” contains a bulleted list of examples of instances of this property.
TXP1 used writing system (writing system used for)

Domain: TX2 Writing
Range: TX3 Writing System
Quantification: one to many (0,n:0,1)
Scope note: This property is intended to identify the specific instance of TX3 Writing System employed during the writing event that led to the creation of a TX1 Written Text.

TXP2 is included within (included)

Domain: TX1 Written Text
Range: TX4 Writing Field
Subproperty of: P56 bears feature
Quantification: one to many (0,n:0,1)
Scope note: This property is intended to describe the relation existing between a TX1 Written Text and the TX4 Writing Field, specifically created to accommodate the text, within which it is inscribed. This relation becomes quite relevant in the very frequent case where more than a single text is found on different areas of a specific support.

TXP3 is rendered by (renders)

Domain: TX5 Reading
Range: TX6 Transcription
Quantification: one to many (0,n:0,1)
Scope note: This property is intended to emphasize the close connection between the TX5 Reading and TX6 Transcription activities, by outlining, in particular, the accurate observation required by scholars in order to perform a valid transcription of a given text.

TXP4 composes (is composed by)

Domain: TX7 Written Text Fragment
Range: TX1 Written Text
Quantification: one to many (0,n:0,1)
Scope note: This property is intended to correlate a text and the different parts of which it can be composed, such as: letters, words, lines or any other scan can be made by scholars because considered to have a particular relevance for the investigation of the text itself.
1.5 Referred to CIDOC CRM Classes and properties

Since the Textual Entities Model refers to and reuses, wherever appropriate, large parts of the CIDOC Conceptual Reference Model, this section provides a comprehensive list of all constructs used from CIDOC CRM, together with their definitions following the CIDOC CRM, ver.6.2.2, September 2017, maintained by CIDOC CRM – SIG.

1.5.1 CIDOC CRM Classes

E1 CRM Entity
Superclass of: E2 Temporal Entity
E52 Time-Span
E53 Place
E54 Dimension
E77 Persistent Item
E92 Spacetime Volume

Scope note: This class comprises all things in the universe of discourse of the CIDOC Conceptual Reference Model.

It is an abstract concept providing for three general properties:
1. Identification by name or appellation, and in particular by a preferred identifier
2. Classification by type, allowing further refinement of the specific subclass an instance belongs to
3. Attachment of free text for the expression of anything not captured by formal properties

With the exception of E59 Primitive Value, all other classes within the CRM are directly or indirectly specialisations of E1 CRM Entity.

Examples:
- the earthquake in Lisbon 1755 (E5)

In First Order Logic:
E1(x)

Properties:
P1 is identified by (identifies): E41 Appellation
P2 has type (is type of): E55 Type
P3 has note: E62 String
 (P3.1 has type: E55 Type)
P48 has preferred identifier (is preferred identifier of): E42 Identifier
P137 exemplifies (is exemplified by): E55 Type
 (P137.1 in the taxonomic role: E55 Type)

E2 Temporal Entity
Subclass of: E1 CRM Entity
Superclass of: E3 Condition State
E4 Period

Scope note: This class comprises all phenomena, such as the instances of E4 Periods, E5 Events and states, which happen over a limited extent in time. This extent in time must be contiguous, i.e., without gaps. In case the defining kinds of phenomena for an instance of E2 Temporal Entity cease to happen, and occur later again at another
time, we regard that the former E2 Temporal Entity has ended and a new instance has come into existence. In more intuitive terms, the same event cannot happen twice.

In some contexts, these are also called perdurants. This class is disjoint from E77 Persistent Item. This is an abstract class and has no direct instances. E2 Temporal Entity is specialized into E4 Period, which applies to a particular geographic area (defined with a greater or lesser degree of precision), and E3 Condition State, which applies to instances of E18 Physical Thing.

Examples:

- Bronze Age (E4)
- the earthquake in Lisbon 1755 (E5)
- the Peterhof Palace near Saint Petersburg being in ruins from 1944 – 1946 (E3)

In First Order Logic:

\[E2(x) \implies E1(x) \]

Properties:

- `P4` has time-span (is time-span of): `E52` Time-Span
- `P114` is equal in time to: `E2` Temporal Entity
- `P115` finishes (is finished by): `E2` Temporal Entity
- `P116` starts (is started by): `E2` Temporal Entity
- `P117` occurs during (includes): `E2` Temporal Entity
- `P118` overlaps in time with (is overlapped in time by): `E2` Temporal Entity
- `P119` meets in time with (is met in time by): `E2` Temporal Entity
- `P120` occurs before (occurs after): `E2` Temporal Entity
- `P173` starts before or at the end of (ends with or after the start of): `E2` Temporal Entity
- `P174` starts before (starts after the start of): `E2` Temporal Entity
- `P175` starts before or with the start of (starts with or after the start of): `E2` Temporal Entity
- `P176` starts before the start of (starts after the start of): `E2` Temporal Entity
- `P182` ends before or at the start of (starts with or after the end of): `E2` Temporal Entity
- `P183` ends before the start of (starts after the end of): `E2` Temporal Entity
- `P184` ends before or with the end of (ends with or after the end of): `E2` Temporal Entity
- `P185` ends before the end of (ends after the end of): `E2` Temporal Entity

E5 Event

Subclass of: `E4` Period
Superclass of: `E7` Activity
`E63` Beginning of Existence
`E64` End of Existence

Scope note: This class comprises changes of states in cultural, social or physical systems, regardless of scale, brought about by a series or group of coherent physical, cultural, technological or legal phenomena. Such changes of state will affect instances of E77 Persistent Item or its subclasses.

The distinction between an E5 Event and an E4 Period is partly a question of the scale of observation. Viewed at a coarse level of detail, an E5 Event is an ‘instantaneous’ change of state. At a fine level, the E5 Event can be analysed into its component phenomena within a space and time frame, and as such can be seen as an E4 Period. The reverse is not necessarily the case: not all instances of E4 Period give rise to a noteworthy change of state.

Examples:

- the birth of Cleopatra (E67)
- the destruction of Herculaneum by volcanic eruption in 79 AD (E6)
- World War II (E7)
- the Battle of Stalingrad (E7)
- the Yalta Conference (E7)
- my birthday celebration 28-6-1995 (E7)
- the falling of a tile from my roof last Sunday
- the CIDOC Conference 2003 (E7)

In First Order Logic:
\[E5(x) \supset E4(x) \]

Properties:
- **P11** had participant (participated in): **E39** Actor
- **P12** occurred in the presence of (was present at): **E77** Persistent Item

E6 Destruction

Subclass of: **E64** End of Existence

Scope note: This class comprises events that destroy one or more instances of E18 Physical Thing such that they lose their identity as the subjects of documentation.

Some destruction events are intentional, while others are independent of human activity. Intentional destruction may be documented by classifying the event as both an E6 Destruction and E7 Activity.

The decision to document an object as destroyed, transformed or modified is context sensitive:
1. If the matter remaining from the destruction is not documented, the event is modelled solely as E6 Destruction.
2. An event should also be documented using E81 Transformation if it results in the destruction of one or more objects and the simultaneous production of others using parts or material from the original. In this case, the new items have separate identities. Matter is preserved, but identity is not.
3. When the initial identity of the changed instance of E18 Physical Thing is preserved, the event should be documented as E11 Modification.

Examples:
- the destruction of Herculaneum by volcanic eruption in 79 AD
- the destruction of Nineveh (E6, E7)
- the breaking of a champagne glass yesterday by my dog

In First Order Logic:
\[E6(x) \supset E64(x) \]

E7 Activity

Subclass of: **E5** Event
Superclass of: **E8** Acquisition
- **E9** Move
- **E10** Transfer of Custody
- **E11** Modification
- **E13** Attribute Assignment
- **E65** Creation
- **E66** Formation
- **E85** Joining
- **E86** Leaving
- **E87** Curation Activity
This class comprises actions intentionally carried out by instances of E39 Actor that result in changes of state in the cultural, social, or physical systems documented.

This notion includes complex, composite and long-lasting actions such as the building of a settlement or a war, as well as simple, short-lived actions such as the opening of a door.

Examples:
- the Battle of Stalingrad
- the Yalta Conference
- my birthday celebration 28-6-1995
- the writing of “Faust” by Goethe (E65)
- the formation of the Bauhaus 1919 (E66)
- calling the place identified by TGN ‘7017998’ ‘Quyunjig’ by the people of Iraq
- Kira Weber working in glass art from 1984 to 1993
- Kira Weber working in oil and pastel painting from 1993

In First Order Logic:
E7(x) ⊃ E5(x)

Properties:
- P14 carried out by (performed): E39 Actor
 (P14.1 in the role of: E55 Type)
- P15 was influenced by (influenced): E1 CRM Entity
- P16 used specific object (was used for): E70 Thing
 (P16.1 mode of use: E55 Type)
- P17 was motivated by (motivated): E1 CRM Entity
- P19 was intended use of (was made for): E71 Man-Made Thing
 (P19.1 mode of use: E55 Type)
- P20 had specific purpose (was purpose of): E5 Event
- P21 had general purpose (was purpose of): E55 Type
- P32 used general technique (was technique of): E55 Type
- P33 used specific technique (was used by): E29 Design or Procedure
- P125 used object of type (was type of object used in): E55 Type
- P134 continued (was continued by): E7 Activity

E12 Production
Subclass of: E11 Modification
E63 Beginning of Existence

This class comprises activities that are designed to, and succeed in, creating one or more new items.

It specializes the notion of modification into production. The decision as to whether or not an object is regarded as new is context sensitive. Normally, items are considered “new” if there is no obvious overall similarity between them and the consumed items and material used in their production. In other cases, an item is considered “new” because it becomes relevant to documentation by a modification. For example, the scribbling of a name on a potsherd may make it a voting token. The original potsherd may not be worth documenting, in contrast to the inscribed one.

This entity can be collective: the printing of a thousand books, for example, would normally be considered a single event.

An event should also be documented using E81 Transformation if it results in the destruction of one or more objects and the simultaneous production of others using parts or material from the originals. In this case, the new items have separate identities and matter is preserved, but identity is not.
Examples:

- the construction of the SS Great Britain
- the first casting of the Little Mermaid from the harbour of Copenhagen
- Rembrandt’s creating of the seventh state of his etching “Woman sitting half dressed beside a stove”, 1658, identified by Bartsch Number 197 (E12,E65,E81)

In First Order Logic:

\[E12(x) \supset E11(x) \]
\[E12(x) \supset E63(x) \]

Properties:

- \[P108 \] has produced (was produced by): \[E24 \] Physical Man-Made Thing
- \[P186 \] produced thing of product type (is produced by): \[E99 \] Product Type

E13 Attribute Assignment

Subclass of: \[E7 \] Activity
Superclass of: \[E14 \] Condition Assessment
[E15] Identifier Assignment
[E16] Measurement
[E17] Type Assignment

Scope note:

This class comprises the actions of making assertions about properties of an object or any relation between two items or concepts.

This class allows the documentation of how the respective assignment came about, and whose opinion it was. All the attributes or properties assigned in such an action can also be seen as directly attached to the respective item or concept, possibly as a collection of contradictory values. All cases of properties in this model that are also described indirectly through an action are characterised as “short cuts” of this action. This redundant modelling of two alternative views is preferred because many implementations may have good reasons to model either the action or the short cut, and the relation between both alternatives can be captured by simple rules.

In particular, the class describes the actions of people making propositions and statements during certain museum procedures, e.g. the person and date when a condition statement was made, an identifier was assigned, the museum object was measured, etc. Which kinds of such assignments and statements need to be documented explicitly in structures of a schema rather than free text, depends on if this information should be accessible by structured queries.

Examples:

- the assessment of the current ownership of Martin Doerr’s silver cup in February 1997

In First Order Logic:

\[E13(x) \supset E7(x) \]

Properties:

- \[P140 \] assigned attribute to (was attributed by): \[E1 \] CRM Entity
- \[P141 \] assigned (was assigned by): \[E1 \] CRM Entity

E18 Physical Thing

Subclass of: \[E72 \] Legal Object
[E92] Spacetime Volume

Superclass of: \[E19 \] Physical Object
[E24] Physical Man-Made Thing
[E26] Physical Feature
This class comprises all persistent physical items with a relatively stable form, man-made or natural.

Depending on the existence of natural boundaries of such things, the CRM distinguishes the instances of E19 Physical Object from instances of E26 Physical Feature, such as holes, rivers, pieces of land etc. Most instances of E19 Physical Object can be moved (if not too heavy), whereas features are integral to the surrounding matter.

An instance of E18 Physical Thing occupies not only a particular geometric space, but in the course of its existence it also forms a trajectory through spacetime, which occupies a real, that is phenomenal, volume in spacetime. We include in the occupied space the space filled by the matter of the physical thing and all its inner spaces, such as the interior of a box. Physical things consisting of aggregations of physically unconnected objects, such as a set of chessmen, occupy a number of individually contiguous spacetime volumes equal to the number of unconnected objects that constitute the set.

We model E18 Physical Thing to be a subclass of E72 Legal Object and of E92 Spacetime volume. The latter is intended as a phenomenal spacetime volume as defined in CRMgeo (Doerr and Hiebel 2013). By virtue of this multiple inheritance we can discuss the physical extent of an E18 Physical Thing without representing each instance of it together with an instance of its associated spacetime volume. This model combines two quite different kinds of substance: an instance of E18 Physical Thing is matter while a spacetime volume is an aggregation of points in spacetime. However, the real spatiotemporal extent of an instance of E18 Physical Thing is regarded to be unique to it, due to all its details and fuzziness; its identity and existence depends uniquely on the identity of the instance of E18 Physical Thing. Therefore this multiple inheritance is unambiguous and effective and furthermore corresponds to the intuitions of natural language.

The CIDOC CRM is generally not concerned with amounts of matter in fluid or gaseous states.

Examples:
- the Cullinan Diamond (E19)
- the cave “Ideon Andron” in Crete (E26)
- the Mona Lisa (E22)

In First Order Logic:
\[E18(x) \supset E72(x) \]
\[E18(x) \supset E92(x) \]

Properties:
- \(P44 \) has condition (is condition of): \(E3 \) Condition State
- \(P45 \) consists of (is incorporated in): \(E57 \) Material
- \(P46 \) is composed of (forms part of): \(E13 \) Physical Thing
- \(P49 \) has former or current keeper (is former or current keeper of): \(E39 \) Actor
- \(P50 \) has current keeper (is current keeper of): \(E39 \) Actor
- \(P51 \) has former or current owner (is former or current owner of): \(E39 \) Actor
- \(P52 \) has current owner (is current owner of): \(E39 \) Actor
- \(P53 \) has former or current location (is former or current location of): \(E53 \) Place
- \(P58 \) has section definition (defines section): \(E46 \) Section Definition
- \(P59 \) has section (is located on or within): \(E53 \) Place
- \(P128 \) carries (is carried by): \(E90 \) Symbolic Object
- \(P156 \) occupies (is occupied by): \(E53 \) Place

E22 Man-Made Object

Subclass of: \(E19 \) Physical Object
E24 Physical Man-Made Thing

Superset of: E84 Information Carrier

Scope note: This class comprises physical objects purposely created by human activity.

No assumptions are made as to the extent of modification required to justify regarding an object as man-made. For example, an inscribed piece of rock or a preserved butterfly are both regarded as instances of E22 Man-Made Object.

Examples:
- Mallard (the World’s fastest steam engine)
- the Portland Vase
- the Coliseum

In First Order Logic:

\[
\begin{align*}
E22(x) & \supset E19(x) \\
E22(x) & \supset E24(x)
\end{align*}
\]

E25 Man-Made Feature

Subclass of: E24 Physical Man-Made Thing

E26 Physical Feature

Scope Note: This class comprises physical features that are purposely created by human activity, such as scratches, artificial caves, artificial water channels, etc.

No assumptions are made as to the extent of modification required to justify regarding a feature as man-made. For example, rock art or even “cup and ring” carvings on bedrock a regarded as types of E25 Man-Made Feature.

Examples:
- the Manchester Ship Canal
- Michael Jackson’s nose following plastic surgery

In First Order Logic:

\[
\begin{align*}
E25(x) & \supset E26(x) \\
E25(x) & \supset E24(x)
\end{align*}
\]

E26 Physical Feature

Subclass of: E18 Physical Thing

Subclass of: E25 Man-Made Feature

Superclass of: E27 Site

Scope Note: This class comprises identifiable features that are physically attached in an integral way to particular physical objects.

Instances of E26 Physical Feature share many of the attributes of instances of E19 Physical Object. They may have a one-, two- or three-dimensional geometric extent, but there are no natural borders that separate them completely in an objective way from the carrier objects. For example, a doorway is a feature but the door itself, being attached by hinges, is not.

Instances of E26 Physical Feature can be features in a narrower sense, such as scratches, holes, reliefs, surface colours, reflection zones in an opal crystal or a density change in a piece of wood. In the wider sense, they are portions of particular objects with partially imaginary borders, such as the core of the Earth, an area of property on the surface of the Earth, a landscape or the head of a contiguous marble statue. They can be measured and dated, and it is sometimes possible to state who or what is or was responsible for them. They cannot be separated from the carrier.
object, but a segment of the carrier object may be identified (or sometimes removed) carrying the complete feature.

This definition coincides with the definition of “fiat objects” (Smith & Varzi, 2000, pp.401-420), with the exception of aggregates of “bona fide objects”.

Examples:
- the temple in Abu Simbel before its removal, which was carved out of solid rock
- Albrecht Duerer’s signature on his painting of Charles the Great
- the damage to the nose of the Great Sphinx in Giza
- Michael Jackson’s nose prior to plastic surgery

In First Order Logic:
\[E_{26}(x) \supset E_{18}(x) \]

E28 Conceptual Object

Subclass of:
- E71 Man-Made Thing

Superclass of:
- E55 Type
- E89 Propositional Object
- E90 Symbolic Object

Scope note:
This class comprises non-material products of our minds and other human produced data that have become objects of a discourse about their identity, circumstances of creation or historical implication. The production of such information may have been supported by the use of technical devices such as cameras or computers.

Characteristically, instances of this class are created, invented or thought by someone, and then may be documented or communicated between persons. Instances of E28 Conceptual Object have the ability to exist on more than one particular carrier at the same time, such as paper, electronic signals, marks, audio media, paintings, photos, human memories, etc.

They cannot be destroyed. They exist as long as they can be found on at least one carrier or in at least one human memory. Their existence ends when the last carrier and the last memory are lost.

Examples:
- Beethoven’s “Ode an die Freude” (Ode to Joy) (E73)
- the definition of “ontology” in the Oxford English Dictionary
- the knowledge about the victory at Marathon carried by the famous runner
- ‘Maxwell equations’ [preferred subject access point from LCSH, http://lccn.loc.gov/sh85082387, as of 19 November 2012]
- ‘Equations, Maxwell’ [variant subject access point, from the same source]

In First Order Logic:
\[E_{28}(x) \supset E_{71}(x) \]

Properties:
P149 is identified by (identifies):
- E75 Conceptual Object Appellation

E29 Design or Procedure

Subclass of:
- E73 Information Object

Scope note:
This class comprises documented plans for the execution of actions in order to achieve a result of a specific quality, form or contents. In particular it comprises plans for deliberate human activities that may result in the modification or production of instances of E24 Physical Thing.
Instances of E29 Design or Procedure can be structured in parts and sequences or depend on others. This is modelled using P69 has association with (is associated with).

Designs or procedures can be seen as one of the following:

1. A schema for the activities it describes
2. A schema of the products that result from their application.
3. An independent intellectual product that may have never been applied, such as Leonardo da Vinci’s famous plans for flying machines.

Because designs or procedures may never be applied or only partially executed, the CRM models a loose relationship between the plan and the respective product.

Examples:
- the ISO standardisation procedure
- the musical notation for Beethoven’s “Ode to Joy”
- the architectural drawings for the Kölner Dom in Cologne, Germany
- The drawing on the folio 860 of the Codex Atlanticus from Leonardo da Vinci, 1486-1490, kept in the Biblioteca Ambrosiana in Milan

In First Order Logic:
\[E29(x) \implies E73(x) \]

Properties:
- P68 foresees use of (use foreseen by): E57 Material
- P69 has association with (is associated with): E29 Design or Procedure
 (P69.1 has type: E55 Type)

E56 Language
Subclass of: E55 Type
Scope note: This class is a specialization of E55 Type and comprises the natural languages in the sense of concepts.

This type is used categorically in the model without reference to instances of it, i.e. the Model does not foresee the description of instances of instances of E56 Language, e.g.: “instances of Mandarin Chinese”.

It is recommended that internationally or nationally agreed codes and terminology are used to denote instances of E56 Language, such as those defined in ISO 639:1988.

Examples:
- el [Greek]
- en [English]
- eo [Esperanto]
- es [Spanish]
- fr [French]

In First Order Logic:
\[E56(x) \implies E55(x) \]

E63 Beginning of Existence
Subclass of: E5 Event
Superclass of: E12 Production
- E65 Creation
- E66 Formation
- E67 Birth
- E81 Transformation
Scope note: This class comprises events that bring into existence any E77 Persistent Item.

It may be used for temporal reasoning about things (intellectual products, physical items, groups of people, living beings) beginning to exist; it serves as a hook for determination of a terminus post quem and ante quem.

Examples:
- the birth of my child
- the birth of Snoopy, my dog
- the calving of the iceberg that sank the Titanic
- the construction of the Eiffel Tower

In First Order Logic:
$$E63(x) \supset E5(x)$$

Properties: \textbf{P92 brought into existence (was brought into existence by): E77 Persistent Item}

\textbf{E70 Thing}
\textbf{Subclass of:} E77 Persistent Item
\textbf{Superclass of:} E71 Man-Made Thing
 E72 Legal Object

Scope note: This general class comprises discrete, identifiable, instances of E77 Persistent Item that are documented as single units, that either consist of matter or depend on being carried by matter and are characterized by relative stability.

They may be intellectual products or physical things. They may for instance have a solid physical form, an electronic encoding, or they may be a logical concept or structure.

Examples:
- my photograph collection (E78)
- the bottle of milk in my refrigerator (E22)
- the plan of the Strassburger Muenster (E29)
- the thing on the top of Otto Hahn’s desk (E19)
- the form of the no-smoking sign (E36)
- the cave of Dirou, Mani, Greece (E27)

In First Order Logic:
$$E70(x) \supset E77(x)$$

\textbf{E71 Man-Made Thing}
\textbf{Subclass of:} E70 Thing
\textbf{Superclass of:} E24 Physical Man-Made Thing
 E28 Conceptual Object

Scope note: This class comprises discrete, identifiable man-made items that are documented as single units.

These items are either intellectual products or man-made physical things, and are characterized by relative stability. They may for instance have a solid physical form, an electronic encoding, or they may be logical concepts or structures.

Examples:
- Beethoven’s 5th Symphony (E73)
- Michelangelo’s David
- Einstein’s Theory of General Relativity (E73)
- the taxon ‘\textit{Fringilla coelebs} Linnaeus,1758’ (E55)
In First Order Logic:
\[E71(x) \supset E70(x) \]

Properties
- **P102** has title (is title of): \[E35 \] Title
- \((P102.1 \text{ has type: } E55 \text{ Type}) \)
- **P103** was intended for (was intention of): \[E55 \] Type

E72 Legal Object
- **Subclass of:** \[E70 \] Thing
- **Superclass of:** \[E18 \] Physical Thing
- **E90** Symbolic Object

Scope note: This class comprises those material or immaterial items to which instances of E30 Right, such as the right of ownership or use, can be applied.

This is true for all E18 Physical Thing. In the case of instances of E28 Conceptual Object, however, the identity of the E28 Conceptual Object or the method of its use may be too ambiguous to reliably establish instances of E30 Right, as in the case of taxa and inspirations. Ownership of corporations is currently regarded as out of scope of the CRM.

Examples:
- the Cullinan diamond (E19)
- definition of the CIDOC Conceptual Reference Model Version 2.1 (E73)

In First Order Logic:
\[E72(x) \supset E70(x) \]

Properties:
- **P104** is subject to (applies to): \[E30 \] Right
- **P105** right held by (has right on): \[E39 \] Actor

E73 Information Object
- **Subclass of:** \[E89 \] Propositional Object
- \[E90 \] Symbolic Object
- **Superclass of:** \[E29 \] Design or Procedure
- \[E31 \] Document
- \[E33 \] Linguistic Object
- \[E36 \] Visual Item

Scope note: This class comprises identifiable immaterial items, such as poems, jokes, data sets, images, texts, multimedia objects, procedural prescriptions, computer program code, algorithm or mathematical formulae, that have an objectively recognizable structure and are documented as single units. The encoding structure known as a "named graph" also falls under this class, so that each "named graph" is an instance of an E73 Information Object.

An E73 Information Object does not depend on a specific physical carrier, which can include human memory, and it can exist on one or more carriers simultaneously.

Instances of E73 Information Object of a linguistic nature should be declared as instances of the E33 Linguistic Object subclass. Instances of E73 Information Object of a documentary nature should be declared as instances of the E31 Document subclass. Conceptual items such as types and classes are not instances of E73 Information Object, nor are ideas without a reproducible expression.

Examples:
- image BM000038850.JPG from the Clayton Herbarium in London
- E. A. Poe's "The Raven"
- the movie "The Seven Samurai" by Akira Kurosawa
- the Maxwell Equations
- The Getty AAT as published as Linked Open Data, accessed 1/10/2014

In First Order Logic:

\[E73(x) \supset E89(x) \]
\[E73(x) \supset E90(x) \]

E77 Persistent Item

Subclass of: [E1 CRM Entity]
Superclass of: [E39 Actor]
\[E70 \text{ Thing} \]

Scope note: This class comprises items that have a persistent identity, sometimes known as “endurants” in philosophy.

They can be repeatedly recognized within the duration of their existence by identity criteria rather than by continuity or observation. Persistent Items can be either physical entities, such as people, animals or things, or conceptual entities such as ideas, concepts, products of the imagination or common names.

The criteria that determine the identity of an item are often difficult to establish - the decision depends largely on the judgement of the observer. For example, a building is regarded as no longer existing if it is dismantled and the materials reused in a different configuration. On the other hand, human beings go through radical and profound changes during their life-span, affecting both material composition and form, yet preserve their identity by other criteria. Similarly, inanimate objects may be subject to exchange of parts and matter. The class E77 Persistent Item does not take any position about the nature of the applicable identity criteria and if actual knowledge about identity of an instance of this class exists. There may be cases, where the identity of an E77 Persistent Item is not decidable by a certain state of knowledge.

The main classes of objects that fall outside the scope the E77 Persistent Item class are temporal objects such as periods, events and acts, and descriptive properties.

Examples:
- Leonard da Vinci
- Stonehenge
- the hole in the ozone layer
- the First Law of Thermodynamics
- the Bermuda Triangle

In First Order Logic:
\[E77(x) \supset E1(x) \]

E90 Symbolic Object

Subclass of: [E28 Conceptual Object]
\[E72 \text{ Legal Object} \]
Superclass of: [E73 Information Object]
\[E41 \text{ Appellation} \]

Scope note: This class comprises identifiable symbols and any aggregation of symbols, such as characters, identifiers, traffic signs, emblems, texts, data sets, images, musical scores, multimedia objects, computer program code or mathematical formulae that have an objectively recognizable structure and that are documented as single units.
It includes sets of signs of any nature, which may serve to designate something, or to communicate some propositional content.

An instance of E90 Symbolic Object does not depend on a specific physical carrier, which can include human memory, and it can exist on one or more carriers simultaneously. An instance of E90 Symbolic Object may or may not have a specific meaning, for example an arbitrary character string.

In some cases, the content of an instance of E90 Symbolic Object may completely be represented by a serialized digital content model, such as a sequence of ASCII-encoded characters, an XML or HTML document, or a TIFF image. The property P3 has note allows for the description of this content model. In order to disambiguate which symbolic level is the carrier of the meaning, the property P3.1 has type can be used to specify the encoding (e.g. "bit", "Latin character", RGB pixel).

Examples:
- ‘ecognizabl’
- The “no-smoking” sign (E36)
- “BM000038850.JPG” (E75)
- image BM000038850.JPG from the Clayton Herbarium in London (E38)
- The distribution of form, tone and colour found on Leonardo da Vinci’s painting named “Mona Lisa” in daylight (E38)
- The Italian text of Dante’s “Divina Commedia” as found in the authoritative critical edition La Commedia secondo l’antica vulgata a cura di Giorgio Petrocchi, Milano: Mondadori, 1966-67 (= Le Opere di Dante Alighieri, Edizione Nazionale a cura della Società Dantesca Italiana, VII, 1-4) (E33)

In First Order Logic:
\[E90(x) \supset E28(x) \]
\[E90(x) \supset E72(x) \]

Properties:
\[P106 \] is composed of (forms part of): \[E90 \] Symbolic Object

1.5.2 CIDOC CRM Properties
This section contains the complete definitions of the properties of the CIDOC CRM Conceptual Reference Model vers. 6.2 May, 2015 referred to by Excavation Model

\[P16 \text{ used specific object (was used for) } \]
\[\text{Domain: } E7 \text{ Activity} \]
\[\text{Range: } E70 \text{ Thing} \]
\[\text{Subproperty of: } E5 \text{ Event, } P12 \text{ occurred in the presence of (was present at): } E77 \text{ Persistent Item} \]
\[E7 \text{ Activity, } P15 \text{ was influenced by (influenced): } E1 \text{ CRM Entity} \]
\[\text{Superproperty of: } E7 \text{ Activity, } P33 \text{ used specific technique (was used by): } E29 \text{ Design or Procedure} \]
\[E15 \text{ Identifier Assignment, } P142 \text{ used constituent (was used in): } E90 \text{ Symbolic Object} \]
\[E79 \text{ Part Addition, } P111 \text{ added (was added by): } E18 \text{ Physical Thing} \]

Quantification: \(\text{many to many (0,n:0,n)} \)

Scope note: This property describes the use of material or immaterial things in a way essential to the performance or the outcome of an \[E7 \text{ Activity}. \]

This property typically applies to tools, instruments, moulds, raw materials and items embedded in a product. It implies that the presence of the object in question was a necessary condition for the action. For example, the activity of writing this text
required the use of a computer. An immaterial thing can be used if at least one of its carriers is present. For example, the software tools on a computer.

Another example is the use of a particular name by a particular group of people over some span to identify a thing, such as a settlement. In this case, the physical carriers of this name are at least the people understanding its use.

Examples:
- the writing of this scope note (E7) used specific object Nicholas Crofts’ computer (E22) mode of use Typing Tool; Storage Medium (E55)
- the people of Iraq calling the place identified by TGN ‘7017998’ (E7) used specific object “Quyunjig” (E44) mode of use Current; Vernacular (E55)

In First Order Logic:

\[
\begin{align*}
P16 (x,y) & \supset E7(x) \\
P16 (x,y) & \supset E70(y) \\
P16 (x,y) & \supset P12(x,y) \\
P16 (x,y) & \supset P15(x,y) \\
P16(x,y,z) & \supset [P16(x,y) \land E55(z)]
\end{align*}
\]

Properties: P16.1 mode of use: E55 Type

\textbf{P20 had specific purpose (was purpose of)}

\begin{itemize}
 \item Domain: E7 Activity
 \item Range: E5 Event
 \item Quantification: many to many (0,n;0,n)
\end{itemize}

Scope note: This property identifies the relationship between a preparatory activity and the event it is intended to be preparation for.

This includes activities, orders and other organisational actions, taken in preparation for other activities or events.

\textit{P20 had specific purpose (was purpose of)} implies that an activity succeeded in achieving its aim. If it does not succeed, such as the setting of a trap that did not catch anything, one may document the unrealized intention using \textit{P21 had general purpose (was purpose of)}:E55 Type and/or \textit{P33 used specific technique (was used by)}: E29 Design or Procedure.

Examples:
- Van Eyck’s pigment grinding in 1432 (E7) had specific purpose the painting of the Ghent altar piece (E12)

In First Order Logic:

\[
\begin{align*}
P21(x,y) & \supset E7(x) \\
P21(x,y) & \supset E55(y)
\end{align*}
\]

\textbf{P56 bears feature (is found on)}

\begin{itemize}
 \item Domain: E19 Physical Object
 \item Range: E26 Physical Feature
 \item Subproperty of: E18 Physical Thing. P46 is composed of (forms part of): E18 Physical Thing
 \item Quantification: one to many, dependent (0,n:1,1)
\end{itemize}

Scope note: This property links an instance of E19 Physical Object to an instance of E26 Physical Feature that it bears.
An E26 Physical Feature can only exist on one object. One object may bear more than one E26 Physical Feature. An E27 Site should be considered as an E26 Physical Feature on the surface of the Earth.

An instance B of E26 Physical Feature being a detail of the structure of another instance A of E26 Physical Feature can be linked to B by use of the property P46 is composed of (forms part of). This implies that the subfeature B is P56i found on the same E19 Physical Object as A.

P56 bears feature (is found on) is a shortcut. A more detailed representation can make use of the fully developed (i.e. indirect) path ‘E19 Physical Object’, through, ‘P59 has section’, ‘E53 Place’, ‘P53i is former or current location of’, to, ‘E26 Physical Feature’.

Examples:

- silver cup 232 (E22) bears feature 32 mm scratch on silver cup 232 (E26)

In First Order Logic:

\[P56(x,y) \supset E19(x) \]
\[P56(x,y) \supset E26(y) \]
\[P56(x,y) \supset P46(x,y) \]

P62 depicts (is depicted by)

Domain: E24 Physical Man-Made Thing

Range: E1 CRM Entity

Quantification: many to many (0,n:0,n)

Scope note: This property identifies something that is depicted by an instance of E24 Physical Man-Made Thing. Depicting is meant in the sense that an E24 Physical Man-Made Thing intentionally shows, through its optical qualities or form, a representation of the entity depicted. Photographs are by default regarded as being intentional in this sense. Anything that is designed to change the properties of the depiction, such as an e-book reader, is specifically excluded. The property does not pertain to inscriptions or any other information encoding.

This property is a shortcut of the more fully developed path from E24 Physical Man-Made Thing through P65 shows visual item, E36 Visual Item, P138 represents, E1 CRM Entity. P138.1 mode of representation “depiction” allows the nature of the depiction to be refined.

Examples:

- The painting “La Liberté guidant le peuple” by Eugène Delacroix (E84) depicts the French “July Revolution” of 1830 (E7)
- the 20 pence coin held by the Department of Coins and Medals of the British Museum under registration number 2006,1101.126 (E24) depicts Queen Elizabeth II (E21) mode of depiction Profile (E55)

In First Order Logic:

\[P62(x,y) \supset E24(x) \]
\[P62(x,y) \supset E1(y) \]
\[P62(x,y,z) \supset [P62(x,y) \wedge E55(z)] \]

Properties: P62.1 mode of depiction: E55 Type

P67 refers to (is referred to by)

Domain: E89 Propositional Object
Range: **E1** CRM Entity
Superproperty of: **E31** Document, **P70** documents (is documented in): **E1** CRM Entity, **E32** Authority Document. **P71** lists (is listed in): **E1** CRM Entity, **E89** Propositional Object. **P129** is about (is subject of): **E1** CRM Entity, **E36** Visual Item. **P138** represents (has representation): **E1** CRM Entity, **E29** Design or Procedure. **P68** foresees use of (use foreseen by): **E57** Material
Quantification: many to many (0,n:0,n)
Scope note: This property documents that an E89 Propositional Object makes a statement about an instance of E1 CRM Entity. **P67** refers to (is referred to by) has the **P67.1** has type link to an instance of E55 Type. This is intended to allow a more detailed description of the type of reference. This differs from **P129** is about (is subject of), which describes the primary subject or subjects of the E89 Propositional Object.
Examples: the eBay auction listing of 4 July 2002 (E73) refers to silver cup 232 (E22) has type item for sale (E55)
In First Order Logic:
\[
P67(x,y) \supset E89(x) \\
P67(x,y) \supset E1(y) \\
P67(x,y,z) \supset [P67(x,y) \land E55(z)]
\]
Properties: **P67.1** has type: **E55** Type

P94 has created (was created by)
Domain: **E65** Creation
Range: **E28** Conceptual Object
Subproperty of: **E63** Beginning of Existence. **P92** brought into existence (was brought into existence by): **E77** Persistent Item
Superproperty of: **E83** Type Creation. **P135** created type (was created by): **E55** Type
Quantification: one to many, necessary, dependent (1,n:1,1)
Scope note: This property allows a conceptual E65 Creation to be linked to the E28 Conceptual Object created by it.

It represents the act of conceiving the intellectual content of the E28 Conceptual Object. It does not represent the act of creating the first physical carrier of the E28 Conceptual Object. As an example, this is the composition of a poem, not its commitment to paper.
Examples:
- the composition of “The Four Friends” by A. A. Milne (E65) has created “The Four Friends” by A. A. Milne (E28)

In First Order Logic:
\[
P94(x,y) \supset E65(x) \\
P94(x,y) \supset E28(y) \\
P94(x,y) \supset P92(x,y)
\]

P106 is composed of (forms part of)
Domain: **E90** Symbolic Object
Range: **E90** Symbolic Object
Quantification: many to many (0,n:0,n)
Scope note: This property associates an instance of E90 Symbolic Object with a part of it that is by itself an instance of E90 Symbolic Object, such as fragments of texts or clippings from an image. This property is transitive.

Examples:

- This Scope note P106 (E33) is composed of fragments of texts (E33)
- ‘recognizable’ P106 (E90) is composed of ‘ecognizabl’ (E90)

In First Order Logic:

\[
P106(x,y) \supset E90(x) \\
P106(x,y) \supset E90(y)
\]

P108 has produced (was produced by)

Domain: E12 Production
Range: E24 Physical Man-Made Thing
Subproperty of: E11 Modification. P31 has modified (was modified by): E24 Physical Man-Made Thing

E63 Beginning of Existence. P92 brought into existence (was brought into existence by): E77 Persistent Item

Quantification: one to many, necessary, dependent (1,n:1,1)

Scope note: This property identifies the E24 Physical Man-Made Thing that came into existence as a result of an E12 Production.

The identity of an instance of E24 Physical Man-Made Thing is not defined by its matter, but by its existence as a subject of documentation. An E12 Production can result in the creation of multiple instances of E24 Physical Man-Made Thing.

Examples:

- The building of Rome (E12) has produced The Colosseum (E22)

In First Order Logic:

\[
P108(x,y) \supset E12(x) \\
P108(x,y) \supset E24(y) \\
P108(x,y) \supset P31(x,y) \\
P108(x,y) \supset P92(x,y)
\]
1.6 Referred to Scientific Observation Model Classes and properties

Since Excavation Model refers to and reuses, wherever appropriate, large parts of Scientific Observation Model this section provides a comprehensive list of all constructs used from that model, together with their definitions following the CRMsci, together with their definitions following version 1.2 maintained by FORTH.

1.6.1 CRMsci Classes

This section contains the complete definitions of the classes of the Scientific Observation Model referred to by Excavation Model

S4 Observation

Subclass of: **E13 Attribute Assignment**

Superclass of: **S21 Measurement** **S19 Encounter Event**

Scope note: This class comprises the activity of gaining scientific knowledge about particular states of physical reality gained by empirical evidence, experiments and by measurements.

We define observation in the sense of natural sciences, as a kind of human activity: at some place and within some time-span, certain physical things and their behavior and interactions are observed, either directly by human sensory impression, or enhanced with tools and measurement devices.

The output of the internal processes of measurement devices that do not require additional human interaction are in general regarded as part of the observation and not as additional inference. Manual recordings may serve as additional evidence. Measurements and witnessing of events are special cases of observations. Observations result in a belief about certain propositions. In this model, the degree of confidence in the observed properties is regarded to be “true” by default, but could be described differently by adding a property \(P3 \) has note to an instance of S4 Observation, or by reification of the property \(O16 \) observed value.

Primary data from measurement devices are regarded in this model to be results of observation and can be interpreted as propositions believed to be true within the (known) tolerances and degree of reliability of the device.

Observations represent the transition between reality and propositions in the form of instances of a formal ontology, and can be subject to data evaluation from this point on. For instance, detecting an archaeological site on satellite images is not regarded as an instance of S4 Observation, but as an instance of S6 Data Evaluation. Rather, only the production of the images is regarded as an instance of S4 Observation.

Examples:

- The excavation of unit XI by the Archaeological Institute of Crete in 2004.

In First Order Logic:

\[
S4(x) \supset E13(x)
\]

Properties:

\(O8 \) observed (was observed by): **S15 Observable Entity**

\(O9 \) observed property type (property type was observed by): **S9 Property Type**
O16 observed value (value was observed by): E1 CRM Entity

S15 Observable Entity
Subclass of: E1 CRM Entity
Superclass of: E2 Temporal Entity E77 Persistent Item
Scope note: This class comprises instances of E2 Temporal Entity or E77 Persistent Item, i.e. items or phenomena that can be observed, either directly by human sensory impression, or enhanced with tools and measurement devices, such as physical things, their behavior, states and interactions or events. Conceptual objects can be present in events by their carriers such as books, digital media, or even human memory. By virtue of this presence, properties of conceptual objects, such as number of words can be observed on their carriers. If the respective properties between carriers differ, either they carry different instances of conceptual objects or the difference can be attributed to accidental deficiencies in one of the carriers. In that sense even immaterial objects are observable. By this model we give credit to the fact that frequently, the actually observed carriers of conceptual objects are not explicitly identified in documentation, i.e., the actual carrier is assumed having existed but is unknown as an individual.

Examples:
- The domestic goose from Guangdong in China.
- The crow flight over the waters of Minamkeak Lake during summer.
- The eruption of Krakatoa volcano at Indonesia in 1883.

In First Order Logic:
\[S15(x) \supset E1(x) \]

Properties: O12 has dimension (is dimension of): E54 Dimension

1.6.2 CRMsci Properties
This section contains the complete definitions of the properties of the Scientific Observation Model referred to by Excavation Model

O6 forms former or current part of (has former or current part)

Domain: S12 Amount of Fluid
Range: S14 Fluid Body
Subproperty of: S10 Material Substantial: O25 contains (is contained in): S10 Material Substantial
Quantification: many to many (0,n:0,n)

Scope note: This property associates an instance of S12 Amount of Fluid with an instance of S14 Fluid Body which forms part of it. It allows instances of S14 Fluid Body to be analyzed into elements of S12 Amount of Fluid.

Examples:
- J.K.’s blood sample 0019FCF5 (S12) is part of J.K.’s blood (S14).

In First Order Logic:
O6(x,y) ⊃ S12(x)
O6(x,y) ⊃ S14(y)

O16 observed value (value was observed by)

Domain: S4 Observation
Range: E1 CRM Entity
Subproperty of: E13 Attribute Assignment, P141 assigned (was assigned by): E1 CRM Entity
Superproperty of: E16 Measurement, P40 observed dimension (was observed in): E54 Dimension (inconsistent with E21 Measurement as long as Observable Entity is not moved to CRM.

Quantification: many to one, necessary (1,1:0,n)

Scope note: This property associates a value assigned to an entity observed by S4 Observation.

Examples:
- The surface survey at the bronze age site of Mitrou in east Lokris carried out by Cornell University in 1989 observed value 600 (and observed sherds).

In First Order Logic:
O16(x,y) ⊃ S4(x)
O16(x,y) ⊃ E1(y)
O16(x,y) ⊃ P141(x,y)