CIDOC Conceptual Reference Model

CRM XML Mapping Utility

Dear colleagues,

The long awaited CRM XML mapping utility I promised in Barcelona is now available. It's an Access application, and requires Access to be installed on your computer to run. The application is written for Access 2000.
The application is intended to be simple it use and has two linked forms. These forms allow you to enter the data needed to define detailed mappings from a source format, such as Dublin Core or FRBR, to the CRM. This definition can then used to generate an XML file, based on Martin Doerr's XML template cf. annexe below.
The screen is divided in two forms. The one in front when the application is started is the "master" form, called “domain map”. The other form is the "detail" form, called “link map”. The forms also separate (more-or-less) left and right into source and target. The comment fields are an exception here since they span the entire width.
The fields at the "master" form are used to define a high level source entity such as a table, and the equivalent CRM entity to which it maps. A "source condition" and a "CRM constraint" fields allow restrictions to be placed on the mapping. For example, a DC record can represent different types of entities, so you would need to express a condition such as "if DC.type = physical object" to define the context of the mapping. A comments field allows you to enter remarks. You should create separate records for each high level entity which needs to be mapped and for each "interpretation" which can be made.
The “detail” form contains a list of "link maps", which are concerned with the "detail" of individual fields and columns. All the information about a link map is stored in one record. Any number of individual link maps can be entered and you should create separate link maps for each field and for each distinct "interpretation".
Each link map consists of the following fields: the "source element" is the name of the field or other element being mapped. "Source condition" is used to indicate any constraints which need to be placed on this field mapping - in much the same way as the master level field at the “domain map” form. "Source Path" expresses the relationship between the high level source entity (table) and the field being mapped. On the right hand (target) side of the screen, "CRM entity" is the CRM entity to which the source element maps. (nb source *fields* generally map to CRM *entities* due to our "object oriented" approach - almost everything is an entity in the CRM.) This field is read-only for reasons explained later. "CRM constraint" is, again, a rule applied as a restriction to the mapping. The two upper fields represent the “source entity” and the equivalent “CRM entity” from the domain map. Copying those fields makes the mapping process more easy and understandable, so it is not necessary to consult the “master” form for that information. Finally, the "comment" field allows you to make remarks about this link map.

 "CRM Path" consists of any number of these two fields, a CRM property and a CRM entity (both with their respective constraints), which all together form the "pathway" needed to arrive at the target entity. This target entity is the last entity that is written in the “CRM Path” and is automatically copied into the previous commented “CRM Entity” field. For example, given a mapping of DC.Title.Lang (the language used for a title in Dublin Core), we can indicate that the path to get there goes through the property "P72 has language (is language of)", which is a property of "E35 Title". The target entity is E56 Language, which we choose from the intermediate entity field and is copied to the “CRM Entity”.

Several fields have lists provided, of CRM entities and CRM properties. These are drawn from ver 3.4 of the CRM. The list of properties in the CRM path subform is reduced automatically according to the domain entity selected, in the first one, and to the previous intermediate entity in the rest. Also the list of intermediate entities in the same subform is reduced according to the previous selected property.

Three buttons, with rather naiff icons, are sitting under all the fields. These allow you to:

· trash the current record (and the related records. For example if we delete a record from the domain map form, all the related link maps and CRM paths will be deleted)

· export the entire database to an XML file (that was what all this was for, after all),

· close the application.

The exported XML file can be opened directly in IE versions 5.x

I took the text for all the pop up bubbles from Martin's notes in the DTD which is hidden on the web site server.
For anyone unfamiliar with MS Access it is worth pointing out that *everything* you enter or modify is automatically saved, hence the absence of any "save" button. This can be a little disconcerting at first. Just skip on to the next record and back again if you want to reassure yourself that your work really has been recorded.

Remarks on the XML template

I find that the number of "constraint" fields makes the mapping difficult to follow. I think it might be sufficient simply to place these constraints in the free text comments fields since they are unlikely to be "machine useable".
Two constraint fields appear in the link map : <src_domain_condition></src_domain_condition> and <src_range_condition></src_range_condition> I left out the first, assuming it to be an error.
The constraint field: <crm_domain_ constraint></crm_domain_ constraint> appears in the target path. This conflicts with the notes in the DTD so I renamed it to <crm_interm_constraint> for consistency.
Martin Doerr's example mapping of DC.Title breaks <src_domain_condition> into three separate elements : <mapped_entity_of>, <op> and <value>. This break-down doesn't figure in the template and I wasn't sure what the operator types should be. To be consistent, a similar approach ought to be applied to all the constraint fields. However, this seemed like far too much trouble so I just left it as a single element.
Since the src_domain_entity already specifies the high level entity being mapped, the src_path element seems superfluous. In the example given, DC->DC.Title is implicit from <src_domain_entity>DC</src_domain_entity> and <src_range_entity> DC.Title</src_range_entity>. Indeed <src_range_entity>Title</src_range_entity> would seem to be sufficient. Are there cases in which the src_path is non trivial?
Finally, you are free to use this application as you see fit, to modify, mutilate or destroy it, and to distribute it as you wish. My apologies if it causes you headaches, but I accept no responsibility for any damage it may cause to you or your computer.

