Description Logics for Documentation

Carlo Meghini
Consiglio Nazionale delle Ricerche
Istituto di Scienza e Tecnologie della Informazione, Pisa, ltaly
carlo.meghini@isti.cnr.it

ABSTRACT

Much of the activity in a digital library revolves around col-
lecting, organizing and publishing knowledge about the re-
sources of the library, in the form of, e.g., metadata records.
In order to document such activity, digital librarians need
to express knowledge about the metadata records they pro-
duce. This knowledge, which we call documentation knowl-
edge, may express e.g., provenance, trustability, or access re-
strictions of the records. Today, documentation knowledge is
mostly represented in digital libraries via RDF. We propose
a new type of information system, called documentation sys-
tem, as a basic component of a digital library allowing to
represent and reason about both domain and documenta-
tion knowledge in an expressive language such as OWL. We
also show how a document system can be used in a practical
setting, so as to minimize the overhead for librarians and to
avoid unnecessary computational complexity.

Categories and Subject Descriptors
[Information Systems]: Digital libraries and archives

General Terms
Description Logic

Keywords

Documentation, Description, Metadata

1. INTRODUCTION

In a digital library, it is often necessary to represent and
reason about two different kinds of knowledge. One kind is
domain knowledge, which in is typically embodied in meta-
data and ontologies, used by the end-users, for instance to
discover and access the resources of the library. The other
kind of knowledge concerns domain knowledge and is used
by digital librarians in order to manage the resources of the
library. For instance, a digital librarian might want to de-
scribe the provenance, or the degree of trust or the access
policy of a metadata record. We call this latter kind of

knowledge as documentation knowledge, since documenta-
tion is one of the main reasons that brings it into life. Doc-
umentation knowledge is a primary matter dealt with by
curators in libraries and archives. In general, it shows up in
any organization that devotes resources to the documenta-
tion of artifacts, events, users, services and in general any
resource that is of value to the organization. Its scope of
application is therefore quite ample.

Documentation knowledge consists of factual and ontologi-
cal statements about individuals, concepts and relations of
the domain of dicourse, and as such it can be expressed
and reasoned upon using standard logics, such as OWL [12].
However, a problem arises if documentation knowledge is to
be used together with domain knowledge, as it happens in
digital libraries. The problem is due to the fact that the
individuals of documentation knowlegde are domain knowl-
edge statements, and in order to express knowledge about
resources and about the statements used to describe such re-
sources in the same language, one needs very powerful lan-
guages, whose expressive power goes beyond that of first-
order logic. Such languages, though, are hardly usable in
digital libraries, because their negative computational prop-
erties are inadequate to digital library requirements.

The Resource Description Frameowrk (RDF) [9] is a case
in point. RDF allows to express metadata records as state-
ments having the described resource as subject and meta-
data elements as properties. It also allows to express a cer-
tain amount of documentation knowledge, by allowing prop-
erties as subjects in statements. However, as soon as the ex-
pressivity of the language goes beyond that of RDF Schema
[4] by including constructs from Description Logics, serious
computational problems arise. Indeed, the combination of
RDF with Description Logics yields the language OWL Full
[?], which is undecidable in spite of the decidability of its
two constituents.

In this study, we tackle the problem of representing and rea-
soning about both domain and documentation knoweldge by
means of languages significantly more expressive than RDF,
but we follow a different approach than RDF. Our approach
is based on the simultaneous usage of two different logics:
the object logic devoted to represent domain knowledge, and
the documentation logic (or doc-logic for short) devoted to
represent documentation knwoledge. We view the resulting
information system, which we call documentation system, as
the backbone of a digital library, used for representing and

reasoning about domain and documentation knowledge both
in an independent and in a joint way, the latter option offer-
ing an innovative query functionality. As such, the present
study extends the model presented in [10], which also allows
to represent documentation knowledge, but whose expres-
sive power does not go beyond that of RDF.

In order to illustrate our approach in general terms, we
choose the Description Logic ALCO [1] as the object logic,
relying on the abstract syntax of DLs, which is more con-
cise than the official OWL notation [?]. Section 2 presents
in a more articulated way the motivations that underlay our
work. Section 3 introduces the doc-logic via an example and
Section 4 gives the axioms capturing part of the meaning of
the concepts and roles of the doc-logic. Section 5 completes
the specification of the semantics of the doc-logic, and in-
troduces documentation systems and their querying facility.
For reason of space, the types of queries that can be an-
swered by a documentation systems are shown only via ex-
amples. Section 9 concludes by discussing the practical use
of documentation systems, including computational consid-
erations.

2. MOTIVATION

Much of the activity of digital librarians revolves around
metadata records. Metadata records are created and main-
tained for many purposes, amongst which documentation
plays a prominent role. Documentation is the process of
collecting and managing evidence about a certain artifact
(such as an e-book) or a certain activity (such as the lend-
ing of an e-book to a particular user) of the digital library.

A metadata record can be viewed as consisting of three sep-
arate parts: a description; a described object, the subject of
the metadata record; and the attribution of the description
to the subject.

A description is a set of features. For instance, a descrip-
tion in a metadata record may consist of two features: (1)
being a book and (2) being titled “Waverley”. Each one
of these features may be understood as describing a set of
resources. In particular, the former feature describes any-
thing that is a book, while the latter describes anything that
is titled “Waverley”. Taken together, the two features form
a description that describes any resource satisfying both of
them. In Description Logics (DLs for short), descriptions
are represented by concepts, and in fact the two terms “de-
scription” and “concept” are synonymous; we will follow the
same convention. In the DL ALCO, the above description
may be represented by the concept

Book M ITitle.{ Waverley}

The attribution of a description to a particular subject is
the act of asserting that that subject does indeed possess
simultaneously all the features that make up the descrip-
tion. This attribution produces a metadata record. In a
DL, attribution is realized by concept assertion, therefore in
ALCO, the metadata record as a whole can be expressed by
the following concept assertion:

b: (Book M ITitle.{ Waverley})
where b is the DL individual that stands for the subject, a

book in this case. In a DL knowledge base (KB for short),
such an assertion is placed in the ABox, the component of
the KB holding factual knowledge. The axioms of DLs can
be used for modelling ontologies, understood as vocabularies
that establish, via terminological axioms, the meaning of the
concepts used in descriptions [6]. A terminological axiom in
our example, could be the following:

Book C (JTitle.Literal M JAuthor.Person)

stating that every book has a title that is a literal, and an
author that is a person. The ontology underlying an ABox
is placed in the other component of a DL KB, the TBox.

The discussion so far seems to indicate that DLs are ade-
quate representation languages for the knowledge contained
in a digital library. Indeed, OWL [12], the W3C recommen-
dations that stand for DLs in the semantic web architec-
ture [3], is known and used in digital libraries.

However, there is a fundamental requirement of digital li-
braries that DLs are not able to capture. This requirement
comes from the fact that documentation, a central activity
in a digital library, may be a recursive process; it may not
be solely confined to the domain of discourse, but it may
also concern the descriptions and metadata records used for
documenting the resources of the domain of discourse. For
example, a digital librarian may need to represent the fact
that a metadata record has a certain provenance, (i.e., it
has been created by a certain person, on a certain date, as
a result of a certain activity), or a certain degree of trusta-
bility; or that the record is subject to a certain set of access
restrictions, or to a certain billing policy.

These requirements are not exclusive of digital librarians.
Other curators, in archives, museums and galleries, deal with
possibly different kinds of objects than those found in digi-
tal libraries, yet have the same requirements concerning the
documentation of their objects or of the activities that in-
volve them. In general, the same requirements arise in every
information system that deals with the documentation of the
individuals of the domain of discourse, be these individuals
users, devices, or events.

In order to cope with the recursiveness of documentation, we
argue that a knowledge representation language is needed
that offers descriptions as first class citizens, that is as in-
dividuals on their own right, endowed with an identity and
a structure. In addition, the language in question should
offer the machinery to attribute a description to a certain
individual, which may itself be a description, thereby coping
with the recursiveness of documentation.

DLs, in spite of their name, fall short of this requirement.
They offer a rich machinery to create descriptions, yet these
descriptions are not denotable as individuals, and therefore
it is not possible to state any knowledge on them, other than
assertions and axioms. As such, the support that DLs offer
to documentation is practically limited.

The situation, however, is not unrecoverable. The machin-
ery of DLs can be used to remedy at this inconvenient, by
slightly shifting the focus of representation from the indi-
viduals, concepts and roles in the domain of discourse, to

descriptions made up of these. The shift is a form of reifi-
cation and leads to a logic, the doc-logic, that allows the
expression of documentation knowledge, in contrast to the
object-logic that is used for representing domain knowledge.

In order to show how this can be done, in the next Section
we introduce a doc-logic corresponding to the object-logic
ALCO. Our doc-logic will be doc-ALCO, more simply called
as alco.

3. INTRODUCING ALco

Suppose we wish to create the above description for the Wa-
verley, and we also want such description to be identified as
the individual d.'. In order to achieve our goal, in alco we
describe the structure of d as the conjunction of two con-
cepts, which we choose to identify as di and d2. We use the
alco role CCld (for Concept Conjunction Identification) for
associating the identifier of a conjunction to the identifiers
of the conjuncts, as follows:

CCld(d,dy) CCld(d, ds)

The role CCld binds an identifier to a part of a concept, and
therefore we will call it a binding role.

Next, we need to state that d; identifies an atomic concept,
say Book. For this, we use the alco role ACld (for Atomic
Concept Identification) as follows:

ACId(d1, Book)

An assertion on the role ACId is in fact an assigment of an
identifier to a whole concept, not just to a part of it, as in the
case of binding roles; therefore will call ACld a concept iden-
tifying role, or more simply an identifying role. Of course,
we could choose to use an atomic concept as an identifier
of itself (e.g., the alco individual Book as an identifier of
the ALCO concept Book) to make a doc-KB more readable;
but we prefer to use different names in order to avoid con-
fusion. We also introduce in alco the role CNId (for Concept
Negation Identification) for identifying negation concepts as
follows: CNId(d, e) assigns the identifier d to the negation of
the concept identified by e. Also CNId is an identifying role.

As seen in the previous section, the title feature is expressed
in ALCO as the concept 3Title.{ Waverley}, known in the
DL world as existential quantification. In order to reduce
this concept to something denotable as the individual da, we
follow the same style followed above for concept conjunction,
as follows:

e we introduce the identifying role ARId (for Atomic Role
Identification), and use it to identify the ALCO role
Title as d3 by the assertion ARId(ds, Title);

e we introduce the identifying role SCld (for Singleton
Concept Identification) and use it to identify the ALCO
singleton concept { Waverley} as da by the assertion
SCld(d4, Waverley);

"We are aware that in real digital libraries, descriptions are
created by using terms from formal vocabularies, such as
Dublin Core; however, this aspect is entirely irrelevant to our
present purposes, therefore we opt for a better readability of
our examples by using terms from the English vocabulary.

e finally, we introduce two identifying roles ERId (for
Role Identification in an FEristential Quantification)
and ECId (for Concept Identification in an Existential
Quantification) and use them to bind dz to its con-
stituent parts by the assertions:

ERId(d2, ds) ECId(dz, ds)

We remark that we could use a ternary role for modeling the
existential quantification; as it is well known, DLs with n-ary
roles are generalizations of DLs, and the generalization does
not impact on the complexity of reasoning in any significant
way. However, we prefer to stay with the more familiar basic
machinery of DL in order to fully highlight the features of
alco, also in terms of axioms (see next section).

Now we have completed the description of d, and can create
the desired metadata record by attributing d to the book
b that we want to describe. The obvious way to state the
association between d and b, is to introduce the alco role
CAss (for Concept Assertion) and use it as follows:

CAss(d, b)

The first argument of a CAss assertion is always a descrip-
tion identifier, whereas the second argument identifies the
subject, which can be any resource. The CAss role allows to
represent in alco an ALCO concept assertion. Yet, it is not
adequate to document metadata record, because there is no
individual that denotes the resulting metadata record in a
CAss assertion. An alternative way of proceeding is to coin
a name, say m, for the metadata record that we want to
create, and then connect m to d and b by using appropriate
role assertions, namely:

MRD(m,d) MRS(m,b)

There is an obvious relation between the just introduced
roles and CAss. This relation will be captured by an axiom,
introduced in next Section.

So far we have simply used a rather cumbersome notation
for expressing a concept assertion. However, this notation
has given us identifiers for the description and the metadata
record that we have created, therefore we are in the posi-
tion of representing documentation knowledge about them.
Suppose we want to state that d was created by John. The
latter feature can be expressed as a description identified by
e as follows:

ARId(e1, Author) SCld(e2, John) ERId(e,e1) ECld(e,e2)

The description e can be attributed to d by stating
CAss(e, d)

Analogously we can document the metadata record m by
specifying a creation time, a creation place and an author
for it. We first create a description h for the ALCO concept
JAuthor.{Sue}, using the alco roles (for brevity, we do not
detail h); finally, we add the assertion:

CAss(h, m)
to the ABox of the doc-KB.

Role Meaning

ACld(d, A) | d identifies the atomic concept A

ARId(d, R) | d identifies the atomic role R

CCld(d,e) | the concept identified by e is a conjunct
of the concept identified by d

CNId(d, e) d identifies the negation of the concept
identified by e

ERId(d, R) | d identifies an existential quantification
having R as role

ECld(d,e) d identifies an existential quantification
whose concept is identified by e

SCld(d, o) d identifies the singleton concept {o}

CAss(d,e) | the individual e is an instance of the concept
identified by d

CSAx(d,e) | the concept identified by d is subsumed by
the concept identified by e

MRD(m,d) | d is the description of the metadata record m

MRS(m,b) | bis the subject of the metadata record m

Table 1: The alco roles

In order to make alco a full doc-logic, we need a role for
representing (at the doc-level) concept subsumptions in an
object-TBox. To this end, we introduce CSAx (for Concept
Subsumption Aziom) with the intended meaning that:

CSAx(e,d)

states that the concept identified by e is a sub-concept of
the concept identified by d.

Summing up the expressive machinery of alco, we can divide
alco roles in the following categories (Table 1 recaps the alco
roles and their informal meaning):

e roles for representing descriptions, that is concepts of
the object-DL; these roles have been already classified
into binding and identifying roles and reflect the con-
cept constructors of the object-DL, which is ALCO;

e the CAss role for representing concept assertions of the
object-DL; we note that concept assertions can also
be used to express role assertions, since a : IR.{b}
is equivalent to R(a,b). For this reason there is no
machinery in alco to represent role assertions of the
object-DL;

e the CSAx role for representing inclusion axioms of the
object-DL;

e roles for representing metadata records; these are the
MRD and the MRS roles.

As it can be seen, the first three categories above are the
doc-machinery proper, because the roles that they include
are used to represent the components of an object KB at the
doc-level. The last category exploits the doc-machinery to
the end of representing metadata records, that are the core
notion of documentation.

We note that the concept constructors modeled by alco in-
clude unary (e.g., negation or singleton), binary (e.g., con-

junction) and ternary (e.g., existential quantification) oper-
ators, therefore alco exemplifies the machinery required to
deal at the doc-level with any DL, even though different
concept constructors would require different doc-logic roles.

We conclude this section by indicating other kinds of knowl-
edge that are relevant to the activity of documentation, and
that can be represented in alco. In particular, in alco it is
possible to:

e Represent lexical knowledge about the terms used for
concepts or roles in descriptions (such as Author or
Book), as resources having one or more lexical forms
(such as “Author” or “Autore”), and related to other
resources in the same lexical space by relations such
as “similar to” or related to”, typically found in the-
sauri. This knowledge is useful for facilitating the
users of the digital library who use terms to designate
resources that are not completely aligned with those
used in descriptions. This knowledge belongs to the
lexicon of the domain of discourse along with onto-
logical knowledge, but, unlike ontological knowledge it
cannot always be expressed via DL axioms because it
has a different logical nature [7]. Today, lexical knowl-
edge is expressed in digital libraries by using on the
SKOS vocabulary [?], but in order to do so properties
and classes have to be seen as objects (technically, as
instances of the SKOS class Concept) thereby intro-
ducing ambiguity in the representation.

e Create collections of metadata records which are at the
basis of catalogs.

e Represent knowledge about the actions that concern
descriptions and metadata records. These actions are
special kinds of events, performed by digital librarians
in their daily activity, and their expression would allow
to document such activity in an appropriate way.

For reasons of space, we no longer discuss these usages of
alco.

4. SEMANTICS

As a DL, alco has a well-defined semantics, based on the
notion of interpretation. This notion, however, turns out to
license undesired situations. In this section we discuss these
undesired situations, and introduce axioms for ruling them
out. These axioms are intended to be in the TBox of any
doc-KB, since they express the semantics of the alco roles.
In order to ease the expression of the axioms, we introduce
some atomic concepts:

e Olnd, OACon and OAROol, for representing individuals,
atomic concepts and atomic roles of the object-DL,
respectively; these concepts are defined as follows (as
customary, 3R abbreviates IR.T):

OInd = 3SCId™; OACon = JACId™; OARol = JARId™
e Concepts denoting the different types of concept and

role identifiers:

Atomld = 3ACId; Conjld = 3CCId; Negld = 3CNId
Someld = JERId; Singld = 3SCId; Roleld = JARId

e The concept Concld denoting concept identifiers:

Concld = Atomld LI Conjld LI Negld LI Someld U Singld

4.1 Identification axioms
The first group of axioms capture the proper behaviour of
the binding and the identifying roles.

First, identifying roles must behave like functions (in OWL
terms, they are functional object properties [11]).

(> 2 ACId) C 1;
(>2ERId) C 1;

(> 2 ARId) C L;
(>2EC) C 1;

(>2CNId) C L
(>25SCld) C L

Concerning the binding role CCld, every identifier used as a
first argument in an assertion on this role, must appear as a
first argument also in at least another assertion on the same
role, because a conjunction has at least two conjuncts. We
express this condition as follows:

(=1CCd) C L

Moreover, for every ERId(d, ¢) assertion, there must be ex-
actly one ECld(d, ¢’) assertion, for any individuals e, e’; and
viceversa. In order to capture this constraint, which we call
pairing constraint, it is not sufficient to include the axiom
JERId = JECId in the TBox. This is due to the fact that
a DL KB is interpreted under the Open World Assump-
tion. As a consequence, a KB whose ABox contains only
the assertion ERId(d, R) and whose TBox contains the axiom
JERId = JECId is not inconsistent; rather, the KB is under-
stood as implicitly stating that there exists some unknown
individual z such that ECld(d, z) is true in every interpreta-
tion. We cannot therefore capture the pairing constraint as
a TBox axiom; we will do it in a different way, illustrated in
the next Section.

Finally, binding and identifying roles must all together sat-
isfy the obvious constraint that the domain of each one of
them be disjoint from the domain of each of the others,
otherwise it may happen that the same identifier be used
to identify two concepts of different kinds. Assuming the
above mentioned pairing constraints are in place, we need
to consider only one of ERId and ECld because the domains
of these two roles are made equivalent by the pairing con-
straint. So, overall we need to declare mutual disjointness
of the domain of six roles; this requires fifteen axioms, all
of the same type. For brevity, we only state the five axioms
stating the disjointness of atomic concept identifiers from
the other types of concept identifiers:

(Atomld M Conjld) C L;
(Atomld M Someld) C L;
(Atomld M Roleld) C L

(Atomld M Negld)

EL
(Atomld M Singld) C L;

4.2 Syntactic axioms

Syntactic axioms are those making sure that the syntax of
the object-DL concepts is properly captured by the asser-
tions of the doc-DL.

A basic constraint of every DL, is that the symbols used
for individuals, atomic concepts and roles come from three

disjoint alphabets.

(OACon M OARol) C L;
(OARoI M OInd) T L

(OACon M OlInd) C L;

We also must make sure that concepts are properly formed
in a doc-KB. To exemplify, if in the doc-KB there is the
assertion that d identifies a negation, i.e., CNId(d, d1), then
di must identify something, and a concept in particular. The
second part of this constraint can be captured via an axiom,
imposing that anything that appears as a second argument
in a CNId assertion be a concept identifier, and the same
for all the other concept constructors. This can be done by
introducing the following axioms:

T C (VCCld.Concld); T C (VYCNId.Concld);
T C (VECId.Concld)

However, the first part of the constraint, namely that there
be in the KB an explicit assertion binding d; to a concept,
cannot be formalized as an axiom, again due to the Open
World Assumption. Similarly to pairing constraints, we have
therefore to find a different way of expressing this kind of
constraints, which we call the syntactic constraints.

4.3 Metadata axioms

Metadata axioms concern identifiers of metadata records.
Our intended notion of a metadata record requires that a
metadata record concern exactly one individual. In order to
capture this intention, we introduce the following axiom:

(> 2MRS) C L

Moreover, we need to enforce a pairing constraint for MRD
and MRS, in the sense that for every assertion of the kind
MRD(m, d), we want the KB to contain at least one assertion
of the form MRS(m, 1), for some individual 4; and viceversa.
For the reasons given above, also this kind of pairing con-
straint has to be captured in a different way.

Finally, we include an axiom for capturing the previously
mentioned relation between the role MRD and MRS from
one side, and the role CAss from the other side. In fact, ev-
ery time we use MRD and MRS for structuring a metadata
record m, as in MRD(m, d) and MRS(m,b), we are implic-
itly asserting that the d describes b, that is, that CAss(d, b).
In order to make this connection happen in a doc-KB, we
introduce the axiom:

MRD™ o MRS C CAss (1)

where o is the role composition operator. Notice that this
axiom leaves the freedom of inserting CAss assertions with-
out the corresponding MRD and MRS assertions. In other
words, it is possible to create concept assertions that are not
metadata records, such as for instance the last assertion of
the previous example.

4.4 Inference Axioms
Inference axioms are required in order to model the proper
behavior of the CAss and the CSAx roles.

Concerning the CAss role and returning to our example,
from the assertions CAss(d,b) and CCld(d,d1) it should fol-
low the assertion CAss(d1,b), because d identifies a concept

conjunction and d; identifies one of the conjuncts. By the
same argument, it also should follow CCld(d, d2). More gen-
erally, modelling the semantics of CAss means laying down
all the rules that capture implied concept assertions, ulti-
mately leading to the axiomatization of (object-level) in-
stance checking in the doc-logic.

Likewise, modelling the semantics of the CSAx role amounts
to axiomatize (object-level) concept subsumption in the doc-
logic. In other words, the doc-logic does not only have to
capture the syntax of the corresponding object-logic, but
also its inference mechanism.

The proof theory of DLs provides us with sound and com-
plete inference methods for both instance checking and subm-
sumption. These methods can be encoded in alco by means
of axioms and semantic conditions, exactly in the same way
the syntax rules of the object-logic are encoded. As a result,
the users of the doc-KB would be able to exploit the implicit
domain knowledge, typically for performing ask operations.
In particular, in order to check whether an individual ¢ is
an instance of an object-concept c, it suffices to identify c
via an individual d and then ask whether CAss(d, i) logically
follows from the doc-KB. The same machinery also allows to
do some consistency checking, for instance checking whether
an individual is an instance of the 1 concept, or of a con-
tradictory description. However, the price to be paid for
achieving this goal would be very high, as the encoding of
inference would make the doc-logic very complex.

In what follows, we will present a much simpler method for
attaining the same goal. Our method is based on the separa-
tion of concerns: implicit documentation knowledge is to be
extracted from the doc-KB, wehreas implicit domain knowl-
edge is to be extracted from the object-KB, and the same
applies to consistency checking. A detailed account of our
method will be presented below. Here we just note that this
approach dispenses us from modelling object-level inference
in the doc-logic, keeping the latter at a much simpler level.

In order to preserve the semantics of the alco roles, we as-
sume that the doc TBox does not contain any axiom con-
cerning these roles other than those given above.

S. STRONG CONSISTENCY

As we have already observed, the axioms that we have in-
troduced so far do not capture pairing and syntactic con-
straints. As a result, a consistent doc-KB may violate these
constraints, defeating intuition. But there is also another
intuitive notion of inconsistency that escapes the axioms, as
illustrated by the following example. Suppose we want to
add to the KB the assertion that b is not a book. In ALCO,
this would be accomplished by introducing the concept as-
sertion:

b : —Book

in the ABox. In alco, instead, the complext concept —Book
must first be created and identified, say as the individual f,
by using the alco roles, and then f must be declared to be
the negation of the atomic concept Book. There is already
an identifier for the latter concept, namely di, therefore all
our replacement librarian must do, is to state:

CNId(f, dy)

so that he can finally assert that b is an instance of f, by
using the alco role assertion:

CAss(f,b)

By adding the last two assertions to those introduced in
the Section 3, the consistency of the doc-KB is not broken.
However, the represented knowledge is clearly inconsistent
from an intuitive point of view, since b is asserted to be a
book and not a book at the same time.

One way to capture pairing and syntacting constraints while
at the same time ruling out the last kind of inconsistency, is
to try to transform a consistent doc-KB into its correspond-
ing object-KB. In order to do so, ALCO concepts must be
extracted from the assertions of the doc-ABox. If the doc-
KB suffers from a pairing or a syntactic inconsistency, then
this extraction is not possible because the assertions in the
doc-ABox do not conform to the syntax of the doc-logic.
Otherwise the extraction is possible, and it allows to de-
termine, for each concept identifier d in the doc-ABox, the
concept identified by d, that we denote as vp(d) (v(d) for
simplicity). Once the function v is determined, the doc-KB
can be transofrmed into its corresponding object-KB, and
the obtained object-KB can be checked for consistency. If
this check succeeds, then the doc-KB satisfies all the intu-
itive consistency criteria.

This approach gives us a simple method for checking consis-
tency of the doc-KB. A further advantage of it, is that we no
longer need to model object level instance checking or sub-
sumption as implicit CAss and CSAx assertions, respectively;
we can transform the doc-KB and perform these inferences
on the resulting object-KB, by relying on well-known algo-
rithms.

This is the route that we will follow in the rest of the paper.
To this end, we will first define how to determine the func-
tion v from a given doc-KB D. Based on the existence of
v(d) for each concept identifier d, we will define a stronger
consistency criterion for a doc-KB. Next, we state the trans-
formation ¢ from a doc-KB to its corresponding object-KB
and define the strongest consistency criterion of a doc-KB
based on the consistency of its corresponding object-KB.

The domain of the function v is the set of concept identifiers:
dom(v) ={d| (T,A) = d: Concld}

and can be efficiently determined as the set of identifiers
that occur as first arguments in a binding or in an identify-
ing role assertion. For each d € dom(v), the value of v(d)
is recursively defined in Table 2. By iterating this recursive
computation on dom(v), the function v can be efficiently
computed. To exemplify, we show the derivation of the con-
cept v(d) associated to identifier d in our running example.
We have:

1. the doc-ABox contains CCld(d, d1) and CCld(d, d2), there-
fore v(d) = v(d1) NMv(dz)

2. the doc-ABox contains ACld(d:, Book), therefore v(d1) =
Book

3. the doc-ABox contains ERId(d2, ds) and ECld(d2, d4),
therefore v(d2) = v (ds).v(ds)

v(d) if the doc-ABox contains

A ACId(d, A)

R ARId(d, R)

v(er)M...Mv(ey,) | CCld(d,e1),...,CCld(d, en), n maximal
—w(e) CNId(d, e)

Jv(e).v(f) ERId(d, e) and ECld(d, f)

{o} SCld(d, o)

w otherwise

Table 2: Assignment of object-DL concepts to iden-
tifiers

4. the doc-ABox contains ACld(ds, Title), therefore v(ds) =

Title

5. the doc-ABox contains SCld(d4, Waverley), therefore
v(ds) = { Waverley }

Overall, we have v(d) = Book M 3 Title.{ Waverley}

Intuitively, if D = (T, A) is a consistent doc-KB, then ex-
actly one of the conditions on the right column of Table 2,
excluding the last row, is met by the ABox A. In fact, consis-
tency of the doc-KB guarantees that there is only one ACld
assertion having d as first term, and that no other role as-
sertion has d as first term. And the same for the other roles.
Moreover, if pairing and syntactinc constraints are satisfied,
then the last row of the table is never entered, because every
CCld, ERId and ECId assertion is paired by a corresponding
one, and every used identifier is associated with a concept.
Overall, therefore, if the doc-KB is consistent and if pairing
and syntactinc constraints are satisfied, we have:

v(d) # w for all d € dom(v),

in other words v is total on D. Based on this consideration
we define a doc-KB D = (T, A) to be fully consistent if v(d)
is total on D.

Let us now consider how to define the transformation ¢. The
DL alco offers the roles CSAx and CAss for representing the
terminological axioms and the assertions of the object-KB,
respectively. Therefore, it is natural to use assertions on
the former role in order to derive the axioms in the object-
TBox, and assertions on the latter role in order to derive
the axioms in the object-ABox. Formally, given a doc-KB
D = (T, A), we have:

o(D) = (T,A)
T {v(d) C v(e) | CSAx(d,e) € A}
A {i:v(d) | (T, A) E CAss(d,i)}

Some explanations are in order concerning the translation of
CAss assertions. Any such assertion has the form CAss(d, 1)
where d is a description identifier and i is either a description
identifier (such as e in the example above) or an individual
denoting any other kind of resource (such as the book b
in the example above). In the latter case, ¢ does not have
to be translated, as there would be nothing to translate it
into. In the former case, i is a concept identifier and d
another concept identifier that describes i. If we translate
both identifiers into the corresponding concepts, the result

doc-ABox v object-ABox

CCid(d, d1), CCld(d, dz2) d = v(d) N v(da)

ACld(d, Book) dy — Book
ER|d(d2,d3), Ec|d(d2,d4) d2 —r 3U(d3).l/(d4)
ARId(ds, Title) ds +— Title

SCld(d4, Waverley)
CAss(d, b)

ds — { Waverley}
b : Book M

MRD (m, d), MRS(m, b)
ERId(e, Author), ECld(e, e1)
SCld(e1, John)

CAss(e, d)

ERId(h, Author), ECId(h, h1)
SCld(hy, Sue)

CAss(h, m)

e — JAuthor.v(er)
e1 — {John}

h — JAuthor.v(hy)
h1 — {Sue}

I Title.{ Waverley}

d : JAuthor.{John}

m : JAuthor.{Sue}

Table 3: Summary of the running example

will be an assertion like C' : D where both C' and D are
object-concepts. In our example, the translation would look
like:

(Book M ITtile.{Waverley}) : JAuthor.{John}

The natural language reading of the last expression is “John
created the description Book titled ‘Waverley’”, which is pre-
cisely what we want to say. However, the above is not a valid
assertion in any DL, and this is the very reason why we set
out to define the doc-DL. Therefore, we have no choice but
to translate only the second identifier. This will result in
the concept assertion:

d : JAuthor.{John}

This means that d will appear in the object-KB, but its con-
nection with the description that it identifies (i.e., (Book M
ITtile.{Waverley})) is lost in the object-KB.

Notice that we require CAss(d,i) to be not only explicitly
asserted, but also implicitly present in the KB, typically as
a consequence of the creation of a metadata record.

Table 3 shows the translation of the doc-KB of our running
example.

Based on these considerations, we say that a doc-KB D =
(T, A) is strongly consistent if D is fully consistent and ¢(D)
is a consistent ALCO KB.

6. DOCUMENTATION SYSTEMS

A documentation system S is a pair S = (D, O) where D is
a doc-KB and O is an object-KB, such that O = ¢(D).

The definition captures the intuitive notion that a docu-
mentation system (DS for short) is a two-sided information
system: it has an object side, offering functionality on do-
main knowledge to end users; and it has a documentation
side, offering functionality on documentation knowledge to
curators. These two sides must be connected in the intuitive
way, and the machinery developed so far aims at guarantee-
ing from the formal point of view that this is indeed the
case.

We expect a DS to be the backbone of a larger system, stor-
ing a wide range of knowledge on both sides. On the object
side, the DS may store knowledge about the entities involved

in descriptions, such as authors and subjects of books, to
stay with our library example. On the documentation side,
the DS may store knowledge about the resources of the or-
ganization, such as loans and bills. These additional kinds
of knowledge can clearly be accommodated in a DS without
altering the structure defined above.

The presence of both domain and documentation knowledge
in a DS, opens up interesting scenarios in querying, as dis-
cussed in the next Section.

6.1 Querying a documentation system

The two KBs in a DS can be queried individually, based
on the kind of knwoledge they store. To illustrate, let us
consider our running example. An end user in need to
know the different editions of the Waverley in the digital
library, must obviously ask the object-KB, where the re-
sources of the library are described. We will call object-
query any query that can be answered by the object-KB.
In our example, a query might be something like Book M
3Title.{ Waverley}. As customary, we will denote the an-
swer to an object query C, against an object-KB O as
ASKo(Co, 0), or simply AsK,(C,), and define:

ASKo(Co) = {i |0 =i:Co}

the operators ASK, and ASKgq within queries. Using these
two operators, the editions of the Wawverley described by
John can be expressed as follows:

Book M 3 Title.{ Waverley} M Askq(3CAss™ . ASK,(FAuthor.{John}))

This is a concept denoting the individuals in the object-
KB that are known to be books titled Waverley, and that
are known in the doc-KB to be described by a description
authored by John. Notice the double nesting of the ASk op-
erator, without which it would not be possible to express the
query. This implies that asking a doc-KB may require ask-
ing a object-KB. Let us now consider the mixed-doc query
asking for the metadata records of the Waverley authored
by Sue. Using the same ask operators introduced above, this
query can be expressed as:

IMRD.(3CAss.AsK, (3 Title.{ Waverley}))NASK,(FAuthor.{Sue})

This is a conjunction of two concepts: the first concept de-
notes the metadata records whose description describes an
individual known in the object-KB to be titled Waverley.
The second concept denotes the individuals known in the
object-KB to be authored by Sue. The conjunction of these
concepts clearly expresses the desired query.

Returning to the example, the doc-ABox contains both MRD(m, d)VVe can formally define the query language used in the above

and MRS(m, b), and therefore, due to the axiom 1 in the doc-
TBox, we have that D = CAss(d,b). Based on the transla-
tion function ¢, the assertion:

b : Book M 3Title.{ Waverley}
ends up in the object-ABox, therefore b € ASK,(C,).

On the other hand, a library manager in need to know which
metadata records exist for a certain resource, must ask the
doc-KB, formulating their need as a doc-query. In our exam-
ple, a doc-query Cy might be something like 3CAss.{b}, ask-
ing for the metadata records about b. We will use Askq(Cq)
for denoting the result of asking doc-query Cy to a doc-KB
and define:

ASKd(Cd) = { 1] O ': 7 Cd}
Clearly, d € Askq(3CAss.{b}).

There is a third category of queries, which we call mized
queries, that can be asked to a DS. Mixed queries involve
both domain and documentation knowledge, and can be of
one of two kinds:

e mized-object queries, asking for the resourses of the
object-KB that satisfy some property expressed in the
doc-KB; for instance, a mixed-object query may ask for
the editions of the Waverley that have been described
by John;

e mized-doc queries, asking for the resourses of the doc-
KB that satisfy some property expressed in the object-
KB; for instance, a mixed-object query may ask for
the metadata records of the Waverley that have been
created by Sue.

In order to express mixed queries, we need to address both
the object- and the doc-KB. One way of doing so, is to use

examples as a concept language including two types of con-
cepts:

1. object-concepts, for expressing object-queries; object-
concepts are an extension of ALCO concepts with the
Ask, operator introduced above;

2. doc-concepts, for expressing doc-queries; doc-concepts
are a contraction of alco concepts, excluding numeri-
cal restrictions and disjunction, but adding the Ask,
operator introduced above.

The syntax of our concept language is given by the following
rules, where the subscripts o and d are used for elements of
the object- and the doc-DL, respectively.

C == C,]|Cy
C, := any object-concept | Askq(Cq)
Cq ::= any doc-concept | AsK,(C,)

We call this language Documentation Query Language (DQL
for short). It is clear that any arbitrary set of DL construc-
tors can be employed on either side of DQL.

In order to give the semantics of DQL, the intepretations of
the doc- and the object-DL are combined in a rather obvi-
ous way. For simplicity, we omit such specification, pointing
out that it allows us to reduce query answering on a DS to
query answering on a single KB whose TBox is given by the
union of the TBoxes of the doc- and the object-KBs, and
the same for the ABox. In order to show the effects of this
result, let us now return to our example queries. From a
semantical point of view, the former query above: Book Il
ITitle.{ Waverley} M AsKq(3CAss™ . ASKo(FAuthor.{John}))
stated against our example DS in Table 3, is equivalent to

the query Book M 3Title.{ Waverley} M 3CAss~ .3 Author.{John}

stated against the union of the KBs shown in the first and
third column of the table. The union contains the assertions:

b : Book M 3Title.{ Waverley}
CAss(d, b)
d : JAuthor.{John}

clearly implying that b is in the answer to the query.

Analogously, the latter query above:

IMRD.(3CAss.AsK, (I Title.{ Waverley}))TASK, (FAuthor.{Sue})

stated against S = (D, O), is equivalent to the query
IMRD.(3CAss.3Title.{ Waverley}) M JAuthor.{Sue} stated
against D U O. The assertions:

MRD(m,d) CAss(d,b)
b : Book M 3Title.{ Waverley}
m : JAuthor.{Sue}

are in D U O, therefore m is in the answer to the query.

7. USABILITY

We are now in the position of stating where alco is placed in
the AL family. In order to express the doc-logic axioms, we
used as concept constructors: conjunction, disjunction, uni-
versal quantification, unqualified existential quantification,
unqualified numerical restrictions, T and L; as role con-
structors, we used inverse roles and role composition. The
simplest member of the AL family that includes all the alco
construcotrs is the ALCQT,., DL, a very expressive logic, of
whose expressive power we have used only a small part (for
instance, we have not used full negation or transitive roles).
As such, alco is a decidable logic (based on Theorem 5.16 in
[1], logical implication in this logic is EXPTIME-complete),
but clearly intractable.

However, this negative computational behavior is relevant
only if the expressive power of alco is used for construct-
ing rich doc-KBs that exploit the full expressive power of
ALCQT, 4 for recording other kinds of knowledge than those
showed in the previous parts of this paper. Typical docu-
mentation systems, in practice, are expected to need much
simpler kinds of knowledge, and to operate in a very specific
scenario, allowing for a more reassuring complexity.

Indeed, in a consistent documentation system S = (D, O),
there is an equivalence between D from the one hand, and
O plus v form the other, in the sense that D can be derived
from O and v, and conversely O and v can be derived from
D. This equivalence suggests an obvious way of managing
a documentation system: curators add descriptions on the
object-side, thereby expanding O, and while doing so also
provide identifiers for the concepts that they create, thereby
defining v in an incremental way. Based on this input, the
underlying software system can generate the corresponding
doc-KB D, in a fully automated way, whenever D is needed.
The user uses the doc-side only for inserting the knowledge
that cannot be expressed in this way, namely:

e to assign descriptions to description identifiers, by mak-
ing assertions on the role CAss;

e to create metadata records, by making assertions on
the roles MRD and MRS.

Whenever this happens, the underlying software system gen-
erates the corresponding doc-assertions (as established by
the translation function ¢.)

This way of proceeding has the obvios advantage that D will
always be fully consistent and “aligned” with O so as to sat-
isfy the relation O = ¢(D). Moreover, the only implicit doc-
umentation knowledge is that resulting from axiom 1; such
knowledge can be made explicit by computing the compo-
sition of the involved role assertions, in a very simple and
efficient way.

In sum, the complexity of maintaining and querying a doc-
umentation system is not affected by the basic documenta-
tion knowledge, expressing the connection between identi-
fiers and identified descriptions. It is only affected by the
kind of knowledge that is added on either side, for applica-
tion purposes.

8. RELATED WORK

We will discuss related work in three main areas: the web,
covering the digital library side, DLs and ontologies. Al-
though there are approaches in all three areas that share
some commonalities with our work, the notion of documen-
tation system does not have any counterpart in the existing
literature, to the best of our knowledge. As already pointed
out, the present work also extends a previous attempt by the
author at modelling documentation knowledge [10], whose
expressive power is however limited to that of RDFS.

In the context of the web, Linked Data promote the usage
of metadata records (“useful information” about a resource
[2]) as web resources of their own right, identified via HTTP
URIs. This basic mechanism is rapidly gaining ground, as
Linked Data become increasingly popular?. There are nowa-
days millions of HTTP URIs that identify metadata records
on the web, yet the potentialities of this idea are exploited
only to a minimal extent, due to the lack of formal foun-
dations. A somewhat more general approach is taken by
OAI-ORE [8], which proposes entire RDF graphs, known as
Resources Maps, as web resources, also identified via HTTP
URIs. Resource Maps are more general than Linked Data
graphs, because they can contain RDF triples about any-
thing. The OAI-ORE vocabulary presents some overlaps
with our doc-logic; in particular, the OAI-ORE property
Describes, connecting a Resource Map to the aggregation
described by it, can be seen as a special case of the CAss
role. But this is the only relation between doc-logic and
OAI-ORE, which is more focussed on the modelling of ag-
gregations on the web.

In the DL literature, the work reported here relates to reifi-
cation, generally understood as the method by which state-
ments in a certain logic are represented as individuals in
the same or in a different logic. In DL, reification means
to translate a relation, into a concept whose instances are
one-to-one with the relation tuples. Reification is used (all
references are from [1]):

e to translate semantic data models into DL (sec. 4.3);

2For an overview of the status of Linked Data datasets, see
http://linkeddata.org/

e to reason with expressive variants of number restric-
tions (sec. 5.4);

e to develop DLs with relations of arbitrary arity (sec.
5.7);

e to represent properties of properties (sec. 10.6.1).

All this work is not relevant to the present work, because we
reify concepts and not relations.

Top ontologies offer a wide range of concepts and properties
for modelling vocabularies and typically include concepts for
representing both domain and documentation knowledge.
For instance in CIDOC-CRM [5], a description would be
modelled as an information object (class E73 Information
Object), and its properties, such as authorship. Ontologies
have a descriptive nature and aim at coverage, in that they
aim at capturing all aspects of reality in a general, appli-
cation independent way. As such, ontologies are not much
concerned about computational aspects and therefore are
not analyzed from the perspective of the present work.

9. CONCLUSIONS

We have presented documentation systems as constituents
of digital libraries, using description logics to represent and
reason about domain and documentation knowledge at the
same time. In particular, the KB of a documentation system
consists of an object-KB and of a doc-KB. In the object-
TBox, it is possible to express domain ontologies as termi-
nological axioms, whereas in the object-ABox it is possible
to express metadata records as DL concept assertions. In
the doc-ABox, it is possible to make assertions involving de-
scriptions and the metadata records of the object-KB Abox,
thereby representing documentation knowledge. As such,
a documentation system significantly extends the expres-
sive capabilities of current digital libraries, mostly based on
RDF.

We have exemplified documentation systems by using a well-
known DL, ALCQO, as object-logic, and by defining the corre-
sponding doc-logic alco. Our interest is not in the doc-logic
per se, but in the simultaneous usage of the doc-logic and
of its corresponding object-logic to the end of satisfying two
distinct categories of users of a DL: end users, from the one
hand, interested in the domain knowledge; and digital li-
brarians or digital curators, from the other hand, interested
in documenting their activity by expressing documentation
knowledge.

Our treatment has covered the theoretical aspects of docu-

mentation systems, in the interest of clarity and well-foundedness.

In particular, we have focussed on the syntax and the se-
mantics of the doc-logic, and highlighted its computational
properties. We have also shown how to re-use the existing
DL proof theory in order to tackle consistency checking and
query answering in a documentation system.

However, our treatment has not been exclusively theoretical.
First, our considerations on how to tackle consistency check-
ing and query answering make the existing DL technology
(Protege, RACER, Pellet, etc.) applicable to the practical
implementation of a documentation system. Moreover, the

discussion in Sectionce7 shows how a documentation system
can be put at work in a practical digital library setting. In-
deed, anyone familiar with OWL can use a documentation
system without having to learn anything new.

10. REFERENCES

[1] Franz Baader, Diego Calvanese, Deborah L.
McGuinness, Daniele Nardi, and Peter F.
Patel-Schneider, editors. The Description Logic
Handbook: Theory, Implementation, and Applications.
Cambridge University Press, 2nd edition, 2003.

[2] Tim Berners-Lee. Linked data.
http://wuw.w3.org/DesignIssues/LinkedData.html.

[3] Tim Berners-Lee, James Hendler, and Ora Lassila.
The semantic web. Scientific American Magazine,
May 2001.

[4] Dan Brickley and R.V. Guha. RDF vocabulary
description language 1.0: RDF schema. W3C
Recommendation, WWW Consortium, February 2004.
http://www.w3.org/TR/rdf-schema/.

[5] Martin Doerr. The CIDOC conceptual reference
model: An ontological approach to semantic
interoperability of metadata. Al Magazine,
24(3):75-92, 2003.

[6] N. Guarino. Formal ontology in information systems.
In Proceedings of FOIS098, pages 3-15. IOS Press,
Amsterdam, 1998. Amended version.

[7] Graeme Hirst. Ontology and the lexicon. In Steffen
Staab and Rudi Studer, editors, Handbook on
Ontologies, pages 269—292. Springer, 2nd edition, 2009.

[8] Carl Lagoze and Herbert Van de Sompel (eds.). ORE
user guide - Primer. Technical report, Open Archives
Initiative. Object Reuse and Exchange, July 2008.
http:

//www.openarchives.org/ore/0.9/primer .html.

[9] Frank Manola and Eric Miller. RDF Primer. W3C
Recommendation, WWW Consortium, February 2004.
http://www.w3.org/TR/rdf-primer/.

[10] Carlo Meghini, Nicolas Spyratos, Tsuyoshi Sugibuchi,
and Jitao Yang. A model for digital libraries and its
translation to rdf. Journal on Data Semantics, 2013.

[11] Boris Motik, Peter F. Patel-Schneider, and Bijan
Parsia. OWL 2 Web Ontology Language structural
specification and functional-style syntax (second
edition). W3C recommendation, W3C, December
2012. http:
//wuw.w3.org/TR/2012/REC-owl2-syntax-20121211/.

[12] W3C OWL Working Group. OWL 2 Web Ontology
Language document overview (second edition). W3C
recommendation, W3C, December 2012.
http://www.w3.org/TR/owl2-overview/.

